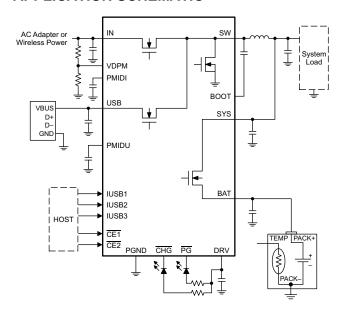


2.5A, Dual-Input, Single Cell Switch Mode Li-Ion Battery Charger with Power Path Management

Check for Samples: bq24165, bq24166, bq24167

FEATURES

- High-Efficiency Switch Mode Charger with Separate Power Path Control
 - Make a GSM Call with a Deeply Discharged Battery or No Battery
 - Instantly Startup System from a Deeply Discharged Battery or No Battery
- Dual Input Charger
 - 20V Input Rating, With Over-Voltage Protection (OVP)
 - 6.5V for USB Input
 - 10.5V for IN Input
 - Integrated FETs for Up to 2.5A Charge Rate
 - Up to 2.5A from IN Input
 - Up to 1.5A from USB Input
- Highly Integrated Battery N-Channel MOSFET Controller for Power Path Management
- Safe and Accurate Battery Management Functions
 - 0.5% Battery Regulation Accuracy
 - 10% Charge Current Accuracy
- Adjustable Charge Current, Input Current Limit, and VINDPM Threshold (for IN input)
- Easy JEITA Implementation
 - Charge Parameter Selector Inputs (CE1, CE2) for (bq24165)
- Voltage-based, NTC Monitoring Input (TS)
 - Standard Temperature Range (bq24166)
 - JEITA Compatible (bq24167)
- Thermal Regulation Protection for Output Current Control
- Low Battery Leakage Current, BAT Short-Circuit Protection
- Soft-Start Feature to Reduce Inrush Current
- Thermal Shutdown and Protection
- Available in Small 2.8mm x 2.8mm 49-ball WCSP or 4mm x 4mm QFN-24 Packages


APPLICATIONS

- Handheld Products
- Portable Media Players
- Portable Equipment
- Netbook and Portable Internet Devices

DESCRIPTION

The bq24165, bq24166 and bq24167 are highly integrated single cell Li-Ion battery charger and system power path management devices targeted for space-limited, portable applications with high capacity batteries. The single cell charger has dual inputs which allow operation from either a USB port or higher power input supply (i.e., AC adapter or wireless charging input) for a versatile solution. The two inputs are fully isolated from each other and are managed by the bq24165/166/167 with the IN input having precedence.

APPLICATION SCHEMATIC

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The power path management feature allows the bq24165/166/167 to power the system from a high efficiency DC to DC converter while simultaneously and independently charging the battery. The charger monitors the battery current at all times and reduces the charge current when the system load requires current above the input current limit. This allows for proper charge termination and timer operation. The system voltage is regulated to the battery voltage but will not drop below 3.5V. This minimum system voltage support enables the system to run with a defective or absent battery pack and enables instant system turn-on even with a totally discharged battery or no battery. The power-path management architecture also permits the battery to supplement the system current requirements when the adapter cannot deliver the peak system currents. This enables the use of a smaller adapter. The 2.5A input current capability allows for GSM phone calls as soon as the adapter is plugged in regardless of the battery voltage.

The battery is charged in three phases: conditioning, constant current and constant voltage. In all charge phases, an internal control loop monitors the IC junction temperature and reduces the charge current if the internal temperature threshold is exceeded. Additionally, the bq24166 and bq24167 offer a voltage-based battery pack thermistor monitoring input (TS) that monitors battery temperature for safe charging. The TS function for bq24166 is JEITA compatible.

ORDERING INFORMATION

PART NUMBER	USB OVP	IN OVP	NTC MONITORING (TS)	JEITA COMPATIBLE	Package
bq24165YFFR	6.5V	10.5 V	No	Yes	WCSP
bq24165YFFT	6.5 V	10.5 V	No	Yes	WCSP
bq24165RGER	6.5V	10.5 V	No	Yes	QFN
bq24165RGET	6.5 V	10.5 V	No	Yes	QFN
bq24166YFFR	6.5 V	10.5 V	Yes	No	WCSP
bq24166YFFT	6.5 V	10.5 V	Yes	No	WCSP
bq24166RGER	6.5 V	10.5 V	Yes	No	QFN
bq24166RGET	6.5 V	10.5 V	Yes	No	QFN
bq24167YFFR	6.5 V	10.5 V	Yes	Yes	WCSP
bq24167YFFT	6.5 V	10.5 V	Yes	Yes	WCSP
bq24167RGER	6.5 V	10.5 V	Yes	Yes	QFN
bq24167RGET	6.5 V	10.5 V	Yes	Yes	QFN

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VALUE/UNITS
Pin voltage range (with respect to PGND)	IN, USB	–2 V to 20 V
	PMIDI, PMIDU, BOOT	-0.3 V to 20 V
	SW	-0.7 V to 12V
	$\overline{\frac{\text{ISET}, \text{ILIM, SCL, SYS, BAT, BGATE, DRV, }\overline{\text{PG}}, \overline{\text{CHG}}, \text{VDPM, IUSB_,}}{\overline{\text{CE}_,\text{TS}}}$	-0.3 V to 7 V
BOOT to SW		-0.3 V to 7 V
Output current (Continuous)	SW	4.5 A
	SYS, BAT	3.5 A
Input current (Continuous)	IN	2.75 A
	USB	1.75 A
Output sink current	PG, CHG	10 mA
Operating free-air temperature range		-40°C to 85°C
Junction temperature, T _J		
Storage temperature, T _{STG}		
Lead temperature (soldering, 10 s)		300°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground terminal unless otherwise noted.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	bo	LIMITO	
	THERMAL METRIC	49 PINS (YFF)	24 PINS (RGE)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	49.8	32.6	
θ_{JCtop}	Junction-to-case (top) thermal resistance	0.2	30.5	
θ_{JB}	Junction-to-board thermal resistance	1.1	3.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.1	0.4	10/00
ΨЈВ	Junction-to-board characterization parameter	6.6	9.3	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	2.6	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

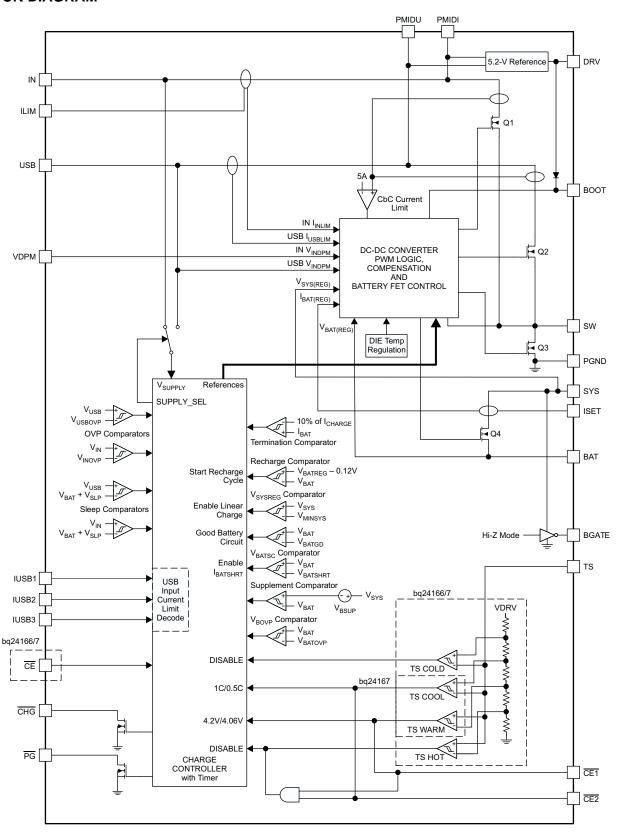
		MIN	MAX	UNITS
V _{IN}	IN voltage range	4.2	18 ⁽¹⁾	V
	IN operating voltage range	4.2	10	
V_{USB}	USB voltage range	4.2	18 ⁽¹⁾	V
	USB operating range	4.2	6	
I _{IN}	Input current, IN input		2.5	Α
I _{USB}	Input current USB input		1.5	Α
I _{SYS}	Ouput current from SW, DC		3	Α
I _{BAT}	Charging		2.5	Α
	Discharging, using internal battery FET		2.5	Α
TJ	Operating junction temperature range	0	125	°C

¹⁾ The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BOOT or SW pins. A tight layout minimizes switching noise.

ELECTRICAL CHARACTERISTICS

Circuit of Figure 1, $V_{SUPPLY} = V_{USB}$ or V_{IN} (whichever is supplying the IC), $V_{UVLO} < V_{SUPPLY} < V_{OVP}$ and $V_{SUPPLY} > V_{BAT} + V_{SLP}$, $T_J = 0^{\circ}C - 125^{\circ}C$ and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted)

	PARAMETER	TEST CONDITION	S	MIN	TYP	MAX	UNITS	
		$V_{\rm UVLO}$ < $V_{\rm SUPPLY}$ < $V_{\rm OVP}$ and $V_{\rm SUPPLY}$ > $V_{\rm BA}$ PWM switching		15		mA		
I _{SUPPLY}	Supply current for control (V_{IN} or V_{USB})	$V_{UVLO} < V_{SUPPLY} < V_{OVP}$ and $V_{SUPPLY} > V_{BA}$ PWM NOT switching			5	ША		
		0°C < T _J < 85°C, High-Z Mode			175	μA		
I _{BATLEAK}	Leakage current from BAT to the Supply	$0^{\circ}\text{C} < \text{T}_{\text{J}} < 85^{\circ}\text{C}, \text{ V}_{\text{BAT}} = 4.2 \text{ V}, \text{ V}_{\text{USB}} = \text{V}_{\text{IN}}$	_I = 0 V			5	μΑ	
I _{BAT_HIZ}	Battery discharge current in high impedance mode, (BAT, SW, SYS)	$0^{\circ}\text{C} < \text{T}_{\text{J}} < 85^{\circ}\text{C}, \text{ V}_{\text{BAT}} = 4.2 \text{ V}, \text{ V}_{\text{SUPPLY}} = \text{IUSB1=IUSB2=IUSB3=1, High-Z mode}$	0 V or 5V			55	μΑ	
POWER PATH	MANAGEMENT							
V _{SYS(REG)}	System regulation voltage	V _{BAT} < V _{MINSYS}		3.6	3.7	3.82	V	
V _{SYSREGFETOFF}	Cystem regulation voltage	Battery FET turned off, Charge disable or	termination	4.26	4.33	4.37	· ·	
V _{MINSYS}	Minimum system regulation voltage	$V_{BAT} < V_{MINSYS}$, Input current limit or V_{INDP}	3.4	3.5	3.62	V		
V _{BSUP1}	Enter supplement mode threshold	V _{BAT} > 2.5 V			V _{BAT} – 40mV		V	
V _{BSUP2}	Exit supplement mode threshold	V _{BAT} > 2.5 V			V _{BAT} – 10mV		V	
I _{LIM(Discharge)}	Current limit, discharge or supplement mode	Current monitored in internal FET only.			7		Α	
t _{DGL(SC1)}	Deglitch time, OUT short circuit during discharge or supplement mode	Measured from(V_{BAT} - V_{SYS}) = 300mV to V_{BGATE} = (V_{BAT} - 600mV)			250		μs	
t _{REC(SC1)}	Recovery time, OUT short circuit during discharge or supplement mode				60		ms	
	Battery range for BGATE operation			2.5		4.5	٧	
BATTERY CHA	ARGER	•						
D	Internal battery charger MOSFET on-	Measured from BAT to SYS,	YFF pkg		37	57		
R _{ON(BAT-SYS)}	resistance	V _{BAT} = 4.2 V	RGE pkg		50	70	mΩ	
		$T_A = 25^{\circ}C, \overline{CE1} = \overline{CE2} = 0$	4.179	4.2	4.221	V		
.,	Detten requisition valte as	CE1=CE2 = 0 or V _{WARM} < V _{TS} < V _{COOL}	4.160	4.2	4.24			
V _{BATREG}	Battery regulation voltage	T _A = 25°C, CE1 =1, CE2 =0	4.04	4.06	4.08			
		CE1=1, CE2=0 or V _{HOT} < V _{TS} < V _{WARM}	4.02	4.06	4.1			
I _{CHARGE}	Charge current programmable range	$I_{CHARGE} = \frac{K_{ISET}}{R_{ISET}}$	550		2500	mA		
		$T_A = 0$ °C to 125°C, $\overline{CE1} = \overline{CE2} = 0$ or		450	400	F40		
K _{ISET}	Programmable fast charge current factor	$V_{WARM} < V_{TS} < V_{COOL}$		450	490	540	ΑΩ	
		$T_A = 0$ °C to 125°C, $\overline{CE1} = 1$, $\overline{CE2} = 0$ or	225	245	270			
V _{BATSHRT}	Battery short threshold	V _{BAT} Rising		2.9	3.0	3.1	V	
V _{BATSHRThys}	Battery short threshold hysteresis	V _{BAT} Falling			100		mV	
I _{BATSHRT}	Battery short current	V _{BAT} < V _{BATSHRT}			50.0		mA	
t _{DGL(BATSHRT)}	Deglitch time for battery short to fastcharge transition			32			ms	
I _{TERM}	Termination charge current	I _{CHARGE} ≤ 1 A		7	10	11.5	%I _{CHARG}	
· I EKIM	auo orango ourrom	I _{CHARGE} >1 A		8	10	11	, CHARG	
t _{DGL(TERM)}	Deglitch time for charge termination	Both rising and falling, 2-mV over- drive, t_{RISE} , t_{FALL} = 100 ns			32		ms	
V _{RCH}	Recharge threshold voltage	Below VBATREG			120		mV	
t _{DGL(RCH)}	Deglitch time	VBAT falling below VRCH, tFALL=100ns			32		ms	
DETECT	Battery detection current before charge done (sink current)			2.5		mA		
t _{DETECT}	Battery detection time				250		ms	
INPUT PROTE	CTION							
	IINUSB=USB100 90 9		95	100				
			IINUSB=USB500	450	475	500		
ı	Input current limiting threshold (USB input	USB charge mode, V _{USB} = 5V, Current	IINUSB=USB150	135	142.5	150	A	
I _{IN_USB}	only)	pulled from PMIDU	IINUSB=USB900	800	850	900	mA	
			IINUSB=USB800	700	750	800		
		IINUSB=1.5A						

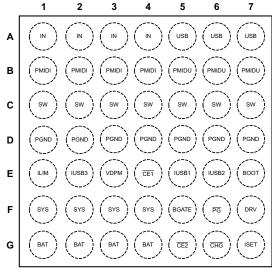

ELECTRICAL CHARACTERISTICS (continued)

Circuit of Figure 1, $V_{SUPPLY} = V_{USB}$ or V_{IN} (whichever is supplying the IC), $V_{UVLO} < V_{SUPPLY} < V_{OVP}$ and $V_{SUPPLY} > V_{BAT} + V_{SLP}$, $T_1 = 0^{\circ}C - 125^{\circ}C$ and $T_1 = 25^{\circ}C$ for typical values (unless otherwise noted)

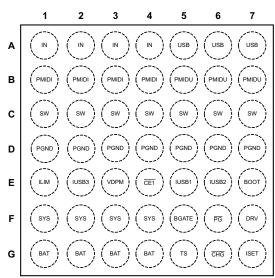
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{INLIM}	Maximum input current limit programmable range for IN input	$I_{INLIM} = \frac{K_{ILIM}}{R_{ILIM}}$	1000		2500	mA
< _{ILIM}	Maximum input current factor for IN input		238	251	264	ΑΩ
/ _{IN_DPM_IN}	VIN_DPM threshold programmable range for IN Input		4.2		10	V
	VDPM threshold		1.18	1.2	1.22	V
,	VIN_DPM threshold for USB Input	USB100, USB150	4.175	4.28	4.36	V
V _{IN_DPM_USB}	VIN_DEW theshold for OSB input	USB500, USB800, USB900, 1.5A current limit selected	4.35	4.44	4.52	V
/ _{DRV}	Internal bias regulator voltage		5	5.2	5.45	V
DRV	DRV Output current		10			mA
/ _{DO_DRV}	DRV Dropout voltage (V _{SUPPLY} – V _{DRV})	I _{SUPPLY} = 1 A, V _{SUPPLY} = 5 V, I _{DRV} = 10 mA			450	mV
/ _{UVLO}	Under-voltage lockout threshold voltage	V _{IN} or V _{USB} rising, 150mV Hysteresis	3.6	3.8	4.0	V
SLP	Sleep-mode entry threshold, VSUPPLY- VBAT	$2.0 \text{ V} \le \text{V}_{\text{BAT}} \le \text{V}_{\text{OREG}}, \text{V}_{\text{IN}} \text{ falling}$	0	40	100	mV
/ _{SLP_EXIT}	Sleep-mode exit hysteresis	2.0 V ≤ V _{BAT} ≤ V _{OREG}	40	100	175	mV
	Deglitch time for supply rising above $V_{\text{SLP}} + V_{\text{SLP}} = XIT$	Rising voltage, 2-mV over drive, t _{RISE} = 100 ns		30		ms
V _{OVP}	Input supply OVP threshold voltage	USB, V _{USB} Rising	6.3	6.5	6.7	V
OVF		IN, V _{IN} Rising	10.3	10.5	10.7	
/ _{OVP(HYS)}	V _{OVP} hysteresis	Supply falling from V _{OVP}		100		mV
/ _{BOVP}	Battery OVP threshold voltage	V_{BAT} threshold over V_{OREG} to turn off charger during charge	1.025 × V _{BATREG}	1.05 × V _{BATREG}	1.075 × V _{BATREG}	V
BATUVLO	Battery UVLO threshold voltage			2.5		V
IMIT	Cycle by Cycle current limit		4.1	4.9	5.6	Α
SHUTDWN	Thermal shutdown	10C Hysteresis		165		С
REG	Thermal regulation threshold			120		С
 -	Safety Timer		324	360	396	min
USB_,			4.0			
/ _{IH}	Input high threshold		1.3		0.4	V
/ _{IL}	Input low threshold	\(\(\tau_{-} \) \(\tau_{-} \) \(\tau_{-} \)			0.4	V
Н /	High-level leakage current	V _{CHG} = V _{PG} = 5V			0.4	μA V
Y _{OL} PWM CONVE	Low-level output saturation voltage	I _o = 10 mA, sink current			0.4	v
WIN CONVE		I _{IN_LIMIT} = 500 mA, Measured from V _{USB} to PMIDU	95		175	
	Internal top reverse blocking MOSFET on- resistance	I _{IN_LIMIT} = 500 mA, Measured from V _{IN} to PMIDI	45		80	$m\Omega$
	Internal top N-channel Switching MOSFET	Measured from PMIDU to SW	100		175	
	on-resistance	Measured from PMIDI to SW	65		110	mΩ
	Internal bottom N-channel MOSFET on- resistance	Measured from SW to PGND	65		115	
osc	Oscillator frequency		1.35	1.50	1.65	MHz
O _{MAX}	Maximum duty cycle			95%		
O _{MIN}	Minimum duty cycle		0			
BATTERY-PA	CK NTC MONITOR (bq24166, bq24167)					
/нот	High temperature threshold	V _{TS} falling	29.7	30	30.5	%V _{DRV}
/ _{HYS(HOT)}	Hysteresis on high threshold	V _{TS} rising		1		/0 V DRV
/ _{WARM}	Warm temperature threshold	V _{TS} falling, bq24167 only	37.9	38.3	39.6	%V _{DRV}
/ _{HYS(WARM)}	Hysteresis on high threshold	V _{TS} rising, bq24167 only		1		70 V DRV
/ _{COOL}	Cool temperature threshold	V _{TS} rising, bq24167 only	56.0	56.5	56.9	%V _{DRV}
HYS(COOL)	Hysteresis on low threshold	V _{TS} falling, bq24167 only		1		70 V DRV
COLD	Low temperature threshold	V _{TS} rising	59.5	60	60.4	%V _{DRV}
/ _{HYS(COLD)}	Hysteresis on low threshold	V _{TS} falling		1		, o v DRV
SOFF	TS Disable threshold	V _{TS} rising, 2%V _{DRV} Hysteresis	70		73	$%V_{DRV}$
DGL(TS)	Deglitch time on TS change			50		ms

TEXAS INSTRUMENTS

BLOCK DIAGRAM

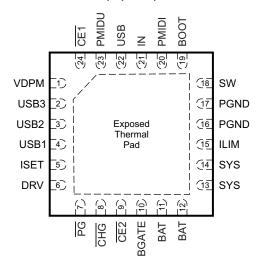


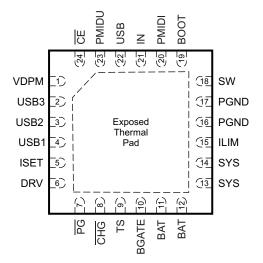
PIN CONFIGURATION


49-Ball 2.8mm x 2.8mm WCSP

bq24165 YFF Package (Top View) 3 4

Pin Configurations are Subject to Change


bq24166/7 YFF Package (Top View)


Pin Configurations are Subject to Change

24-Pin 4mm x 4mm QFN

bq24165 RGE Package (Top View)

bq24166/7 RGE Package (Top View)

PIN FUNCTIONS

		PIN N	IUMBER		<u> </u>	PIN FUNCTIONS
PIN	bq24			1166/7	1/0	DESCRIPTION
NAME	YFF	RGE	YFF	RGE		
IN	A1-A4	21	A1-A4	21	I	Input power supply. IN is connected to the external DC supply (AC adapter or alternate power source). Bypass IN to PGND with at least a $1\mu F$ ceramic capacitor.
USB	A5–A7	22	A5–A7	22	I	USB Input Power Supply. USB is connected to the external DC supply (AC adapter or USB port). Bypass USB to PGND with at least a 1µF ceramic capacitor.
PMIDI	B1-B4	20	B1-B4	20	0	Reverse Blocking MOSFET and High Side MOSFET Connection Point for High Power Input. Bypass PMIDI to GND with at least a 4.7µF ceramic capacitor. Use caution when connecting an external load to PMIDI. The PMIDI output is not current limited. Any short on PMIDI will result in damage to the IC.
PMIDU	B5–B7	23	B5-B7	23	0	Reverse Blocking MOSFET and High Side MOSFET Connection Point for USB Input. Bypass PMIDU to GND with at least a 4.7µF ceramic capacitor. Use caution when connecting an external load to PMIDU. The PMIDU output is not current limited. Any short on PMIDU will result in damage to the IC.
SW	C1-C7	18	C1-C7	18	0	Inductor Connection. Connect to the switched side of the external inductor.
PGND	D1-D7	16, 17	D1-D7	16, 17	_	Ground terminal. Connect to the thermal pad (for QFN only) and the ground plane of the circuit.
ILIM	E1	15	E1	15	ı	IN Input Current Limit Programming Input. Connect a resistor from ILIM to GND to program the input current limit for IN. The current limit is programmable from 1A to 2.5A. ILIM has no effect on the USB input.
VDPM	E3	1	E3	1	ı	Input DPM Programming Input. Connect a resistor divider from IN to GND with VDPM connected to the center tap to program the Input Voltage based Dynamic Power Management (V _{IN} -DPM) threshold. The input current is reduced to maintain the supply voltage at V _{IN} -DPM. See the <i>Input Voltage based Dynamic Power Management</i> section for a detailed explanation.
CE	_	_	E4	24	I	Charge Enable Input. \overline{CE} is used to disable or enable the charge process. A low logic level (0) enables charging and a high logic level (1) disables charging. When charging is disabled, the SYS output remains in regulation, but BAT is disconnected from SYS. Supplement mode is still available if the system load demands cannot be met by the supply. BGATE is high impedance when \overline{CE} is high.
IUSB1	E5	4	E5	4	I	USB Input Current Limit Programming Inputs. USB1, USB2 and USB3
IUSB2	E6	3	E6	3	I	program the input current limit for the USB input. USB2.0 and USB3.0 current limits are available for easy implementation of these standards. Table 1
IUSB3	E2	2	E2	2	I	shows the settings for these inputs. USB1, USB2 and USB3 have no effect on the IN input.
CE1	E4	24	_	_	I	JEITA Compliance Inputs. CE1 and CE2are used to change battery regulation
CE2	G5	9	-	_	I	and charge current regulation to comply with the JEITA charging standard. The charge voltage can be reduced by 140mV or the charge current may be reduced to half the programmed value. See Table 2 for programming details.
воот	E7	19	E7	19	I	High Side MOSFET Gate Driver Supply. Connect a $0.01\mu F$ ceramic capacitor (voltage rating > 10V) from BOOT to SW to supply the gate drive for the high side MOSFETs.
SYS	F1–F4	13, 14	F1–F4	13, 14	ı	System Voltage Sense and Charger FET Connection. Connect SYS to the system output at the output bulk capacitors. Bypass SYS locally with at least 10µF. 47µF bypass capacitance is recommended for best transient response.
BGATE	F5	10	F5	10	0	External Discharge MOSFET Gate Connection. BGATE drives an external P-Channel MOSFET to provide a very low resistance discharge path. Connect BGATE to the gate of the external MOSFET. BGATE is low during high impedance mode and when no input is connected. BGATE is optional. If unused, leave BGATE unconnected.
PG	F6	7	F6	7	0	Power Good Open Drain Output. \overline{PG} is pulled low when a valid supply is connected to either USB or IN. A valid supply is between $V_{BAT}+V_{SLP}$ and V_{OVP} . If not supply is connected or the supply is out of this range, \overline{PG} is high impedance.

PIN FUNCTIONS (continued)

		PIN N	IUMBER			
PIN NAME	bq24165		bq24	bq24166/7		DESCRIPTION
	YFF	RGE	YFF	RGE		
DRV	F7	6	F7	6	0	Gate Drive Supply. DRV is the bias supply for the gate drive of the internal MOSFETs. bypass DRV to PGND with a 1µF ceramic capacitor. DRV may be used to drive external loads up to 10mA. DRV is active whenever the input is connected and $V_{\text{SUPPLY}} > V_{\text{UVLO}}$ and $V_{\text{SUPPLY}} > (V_{\text{BAT}} + V_{\text{SLP}})$
BAT	G1–G4	11, 12	G1–G4	11, 12	I/O	Battery Connection. Connect to the positive terminal of the battery. Additionally, bypass BAT to GND with at least a 1µF capacitor.
TS	-	-	G5	9	I	Battery Pack NTC Monitor. Connect TS to the center tap of a resistor divider from DRV to GND. The NTC is connected from TS to GND. The TS function in the bq24166 provides 2 thresholds for Hot/ Cold shutoff, while the bq24167 has 2 additional thresholds for JEITA compliance. See the <i>NTC Monitor</i> section for more details on operation and selecting the resistor values. Connect TS to DRV to disable the TS function.
CHG	G6	8	G6	8	0	Charge Status Open Drain Output. CHG is pulled low when a charge cycle starts and remains low while charging. CHG is high impedance when the charging terminates and when no supply exists. CHG does not indicate recharge cycles.
ISET	G7	5	G7	5	I	Charge Current Programming Input. Connect a resistor from ISET to GND to program the fast charge current. The charge current is programmable from 550mA to 2.5A.
Thermal Pad	_	Pad	_	Pad	-	There is an internal electrical connection between the exposed thermal pad and the PGND pin of the device. The thermal pad must be connected to the same potential as the PGND pin on the printed circuit board. Do not use the thermal pad as the primary ground input for the device. PGND pin must be connected to ground at all times.

TYPICAL APPLICATION CIRCUIT

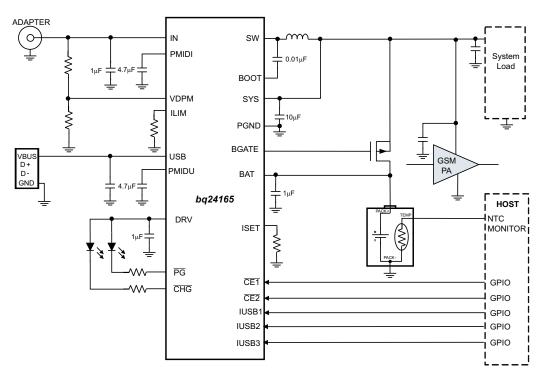
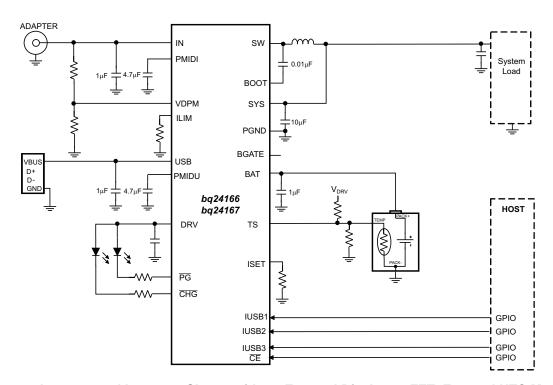
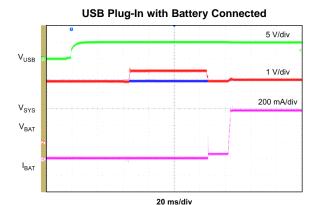
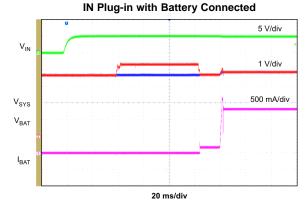


Figure 1. bq24165, Shown with External Discharge FET, PA Connected to System for GSM Call Support with a Deeply Discharged or No Battery


Figure 2. bq24166 and bq24167, Shown with no External Discharge FET, External NTC Monitor

TYPICAL CHARACTERISTICS

Conditions: USB500, 925mA Charge Setting Figure 3.

Conditions: 1500mA ILIM, 1300mA Charge Setting Figure 4.

V_{USB} V_{SYS} V_{BAT} 10 ms/div

Figure 5.

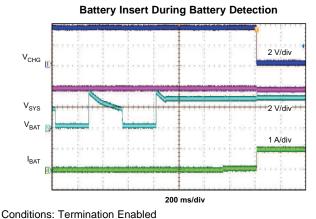


Figure 6.

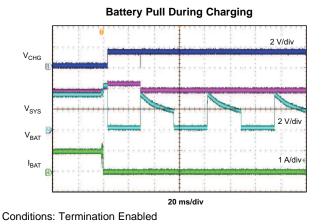
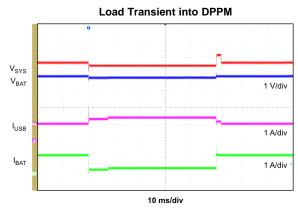
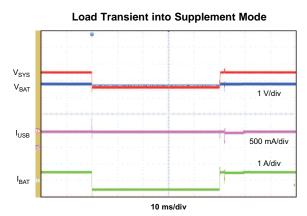



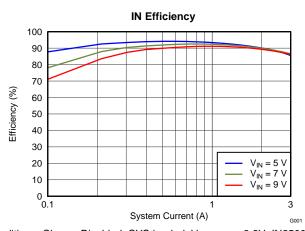
Figure 7.



Conditions: MINSYS Operation, USB1500, 200mA-1400mA Load Step on SYS

Figure 8.

TYPICAL CHARACTERISTICS (continued)



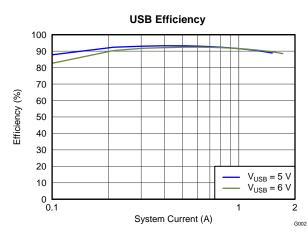
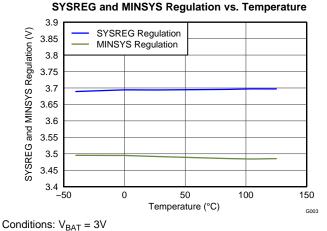
Conditions: MINSYS Operation, USB500, 200mA - 1400mA Load Step on SYS

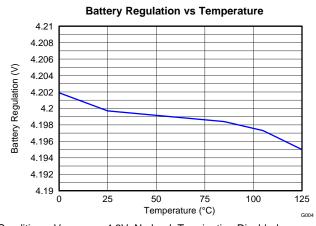
USB Input $V_{\rm USB}$ 5 V/div 5 V/div V_{CHG} 5 V/div V_{SW} I_{BAT} 500 mA/div 4 ms/div

OVP Fault

Figure 9.

Conditions: Charge Disabled, SYS loaded, $V_{BATREG} = 3.6V$, IN2500 ILIM

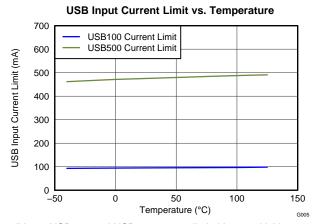



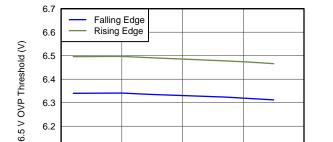

Figure 10.

Conditions: Charge Disabled, SYS loaded, $V_{BATREG} = 3.6V$, USB1500 ILIM

Figure 12.

Figure 11.


Conditions: V_{BATREG} = 4.2V, No load, Termination Disabled Figure 14.


Figure 13.

150

TYPICAL CHARACTERISTICS (continued)

6.5V OVP Threshold vs. Temperature

Conditions: USB input and IN input (bq24168)

0

6.1

-50

Conditions: USB100 and USB500 current limit, $\rm V_{USB} = 5V, \, V_{BAT} = 3.6V$

Figure 15.

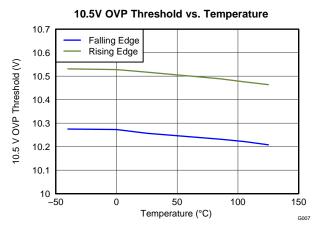
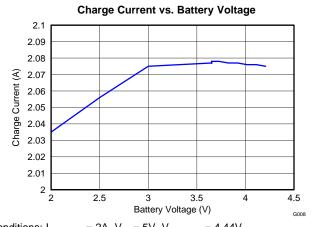
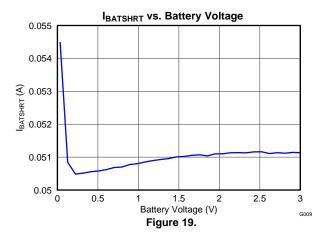



Figure 16.


50

Temperature (°C)

100

 $\label{eq:Conditions: I_CHARGE} Conditions: I_{CHARGE} = 2A, \ V_{IN} = 5V, \ V_{BATREG} = 4.44V$ Figure 17. Figure 18.

DETAILED DESCRIPTION

CHARGE MODE OPERATION

Charge Profile

Charging is done through the internal battery MOSFET. When the battery voltage is above 3.5V, the system output (SYS) is connected to the battery to maximize the charging efficiency. There are 5 loops that influence the charge current; constant current loop (CC), constant voltage loop (CV), thermal regulation loop, minimum system voltage loop (MINSYS) and input voltage dynamic power management loop (V_{IN}-DPM). During the charging process, all five loops are enabled and the dominate one takes control. The bq24165/6/7 supports a precision Lilon or Li-Polymer charging system for single-cell applications. The minimum system output feature regulates the system voltage to a minimum of V_{SYS(REG)}, so that startup is enabled even for a missing or deeply discharged battery. Figure 20 shows a typical charge profile including the minimum system output voltage feature.

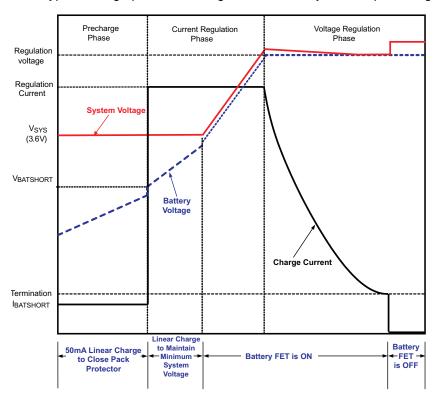


Figure 20. Typical Charging Profile of bq24165/6/7

PWM CONTROLLER IN CHARGE MODE

The bq24165/6/7 provides an integrated, fixed 1.5 MHz frequency voltage-mode converter to power the system and supply the charge current. The voltage loop is internally compensated and provides enough phase margin for stable operation, allowing the use of small ceramic capacitors with very low ESR.

The bq24165/6/7 input scheme prevents battery discharge when the supply voltages is lower than VBAT and also isolates the two inputs from each other. The high-side N-MOSFET (Q1/Q2) switches to control the power delivered to the output. The DRV LDO supplies the gate drive for the internal MOSFETs. The high side FETs are supplied through a boot strap circuit with external boot-strap capacitor is used to boost up the gate drive voltage for Q1/Q2.

Both inputs are protected by a cycle-by-cycle current limit that is sensed through the internal MOSFETs for Q1 and Q2. The threshold for the current limit is set to a nominal 5-A peak current. The inputs also utilize an input current limit that limits the current from the power source.

BATTERY CHARGING PROCESS

When the battery is deeply discharged or shorted, the bq24165/6/7 applies a 50mA current to bring the battery voltage up to acceptable charging levels. During this time, the battery FET is linearly regulated to maintain the system output regulation at V_{SYS(REG)}. Once the battery rises above V_{BATSHRT}, the charge current increases to the fastcharge current setting. The SYS voltage is regulated to V_{SYS(REG)} while the battery is linearly charged through the battery FET. Under normal conditions, the time spent in this region is a very short percentage of the total charging time, so if the charge current is reduced, the reduced charge rate does not have a major negative effect on total charge time. If the current limit for the SYS output is reached (limited by the input current limit, or V_{IN}-DPM), the charge current is reduced to provide the system with all the current that is needed. If the charge current is reduced to 0mA, pulling further current from SYS causes the output to fall to the battery voltage and enter supplement mode (see the *Dynamic Power Path Management* section for more details).

Once the battery is charged enough to where the system voltage begins to rise above V_{SYSREG} (depends on the charge current setting), the battery FET is turned on fully and the battery is charged with the charge current programmed using the ISET input, I_{CHARGE} . The slew rate for fast charge current is controlled to minimize the current and voltage over-shoot during transient. The charge current is programmed by connecting a resistor from ISET to GND. The value for R_{ISET} is calculated using Equation 1:

$$R_{\text{ISET}} = \frac{K_{\text{ISET}}}{I_{\text{CHARGE}}} \tag{1}$$

Where I_{CHARGE} is the programmed fast charge current and K_{ISET} is the programming factor found in the Electrical Characteristics table.

The charge current is regulated to I_{CHARGE} until the battery is charged to the regulation voltage. Once the battery voltage is close to the regulation voltage, V_{BATREG} , the charge current is tapered down as shown in Figure 1 while the SYS output remains connected to the battery. The voltage regulation feedback occurs by monitoring the battery-pack voltage between the BAT and PGND pins.

The bq24165/6/7 monitors the charging current during the voltage regulation phase. Once the termination threshold, I_{TERM} , is detected and the battery voltage is above the recharge threshold, the bq24165/6/7 terminates charge and turns off the battery charging FET. The system output is regulated to the $V_{BAT(REG)}$ voltage and supports the full current available from the input. Battery supplement mode (see the *Dynamic Power Path Management* section for more details) is still available.

A charge cycle is initiated when one of the following conditions is detected:

- 1. The battery voltage falls below the V_{BAT(REG)}-V_{RCH} threshold.
- 2. V_{SUPPLY} Power-on reset (POR)
- 3. CE1, CE2 Input toggle or CE toggle
- 4. Toggle Hi-Impedance mode (using IUSB_)

If the battery voltage is ever greater than $V_{BAT(REG)}$, the PWM converter is turned off and the battery is discharged to V_{BATREG} - V_{RCH} . Additionally, if the battery is ever above V_{BOVP} , the buck converter turns off and the internal battery FET is turned on. This prevents further overcharging the battery and allows the battery to discharge to safe operating levels.

DYNAMIC POWER PATH MANAGEMENT

The bq24165/6/7 features a SYS output that powers the external system load connected to the battery. This output is active whenever a source is connected to IN, USB or BAT. The following sections discuss the behavior of SYS with a source connected to the supply (IN or USB) or a battery source only.

INPUT SOURCE CONNECTED

When a source is connected to IN or USB, and the bq24165/6/7 is enabled, the buck converter starts up. If charging is enabled using CE1 and CE2(bq24165) or CE (bq24166/7), the charge cycle is initiated. When $V_{BAT} > 3.5V$, the internal battery FET is turned on and the SYS output is connected to V_{BAT} . If the SYS voltage falls to $V_{SYS(REG)}$, it is regulated to that point to maintain the system output even with a deeply discharged or absent battery. In this mode, the SYS output voltage is regulated by the buck converter and the battery FET is linearly regulated to regulate the charge current into the battery. The current from the supply is shared between charging the battery and powering the system load at SYS. The dynamic power path management (DPPM) circuitry of the bq24165/6/7 monitors the SYS voltage continuously. If V_{SYS} falls to V_{MINSYS} , the DPPM circuit adjusts charge

current to maintain the load on SYS while preventing the system voltage from crashing. If the charge current is reduced to zero and the load increases further, the bq24165/6/7 enters battery supplement mode. During supplement mode, the battery FET is turned on and the battery supplements the system load. When the charge current is reduced by the DPPM regulation loop, the safety timer runs at half speed, so that it is twice a long. This prevents false safety timer faults. See the *Safety Timer* section for more details.

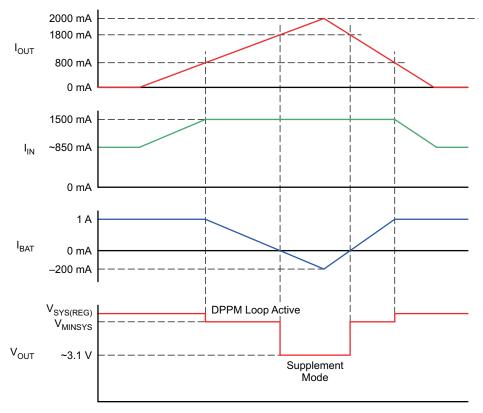


Figure 21. Example DPPM Response (V_{Supply} = 5 V, V_{BAT} = 3.1V, 1.5A Input current limit)

If the $V_{BAT(REG)}$ threshold is ever less than the battery voltage, the battery FET is turned off and the SYS output is regulated to $V_{SYSREG(FETOFF)}$. If the battery is ever 5% above the regulation threshold, the battery OVP circuit shuts the PWM converter off and the battery FET is turned on to discharge the battery to safe operating levels.

The input current limit for the USB input is set by the IUSB1, IUSB2, and IUSB3 inputs. The bq24165/6/7 incorporates all of the necessary input current limits to support USB2.0 and USB3.0 standards as well as 1.5A to support wall adapters. Driving IUSB1, IUSB2, and IUSB3 all high places the bq24165/6/7 in High Impedance mode where the buck converter is shutdown regardless if an input is connected to USB or IN. Table 1 shows the configuration for IUSB1 – IUSB3. When USB100 mode is selected, termination is disabled.

Table 1. USB1, USB2 and USB3 Input Table

IUSB3	IUSB2	IUSB1	Input Current Limit	V _{INDPM} Threshold
0	0	0	100 mA	4.28 V
0	0	1	500 mA	4.44 V
0	1	0	1.5 A	4.44 V
0	1	1	USB Suspend	None
1	0	0	150 mA	4.28 V
1	0	1	900 mA	4.44 V
1	1	0	800 mA	4.44 V
1	1	1	High Impedance Mode	None

The input current limit for IN is programmable using the ILIM input. Connect a resistor from ILIM to GND to set the maximum input current limit. The programmable range for the IN input current limit is 1000mA to 2.5A. R_{ILIM} is calculated using Equation 2:

$$R_{ILIM} = \frac{K_{ILIM}}{I_{IN_LIM}}$$
 (2)

Where I_{IN_LIM} is the programmed input current limit and K_{ILIM} is the programming factor found in the Electrical Characteristics table.

The bq24165/6/7 manages the dual input supply paths as well. The IN input has precedence when valid supplies are connected to both inputs. The two inputs are always isolated from one another. The bq24165/6/7 always seeks to charge from a valid source. For example, if a valid source is connected to USB and a source is connected to IN that is greater than the OVP threshold, the USB source is used to charge the battery. In this case, both the USB source and the battery would be isolated from the OVP source connected to the IN input.

BATTERY ONLY CONNECTED

When the battery is connected with no input source, the battery FET is turned on similar to supplement mode. In this mode, the current is not regulated; however, there is a short circuit current limit. If the short circuit limit is reached, the battery FET is turned off for the deglitch time. After the deglitch time, the battery FET is turned on to test and see if the short has been removed. If it has not, the FET turns off and the process repeats until the short is removed.

EXTERNAL BATTERY DISCHARGE FET (BGATE)

The bq24165/6/7 contains a MOSFET driver to drive an external P-Channel MOSFET between the battery and the system output. This external FET provides a low impedance path to supply the system from the battery. Connect BGATE to the gate of the external discharge MOSFET. BGATE is on under the following conditions:

- 1. No valid input supply connected.
- 2. IUSB1=IUSB2=IUSB3=high (High Impedance Mode)

This FET is optional and runs in parallel with the internal charge FET during discharge. Note that this FET is not protected by the short circuit current limit.

SAFETY TIMER

At the beginning of charging process, the bq24165/6/7 starts the 6 hour safety timer. This timer is active during the entire charging process. If charging has not terminated before the safety timer expires, the charge cycle is terminated and the battery FET is turned off. A new charge cycle must be entered using CE1 and CE2 (bq24165) or CE(bq24166/7) or High Impedance mode or input power must be toggled in order to clear the safety timer fault.

During the fast charge phase, several events increase the timer durations.

- 1. The system load current reduces the available charging current.
- 2. The input current is reduced because the V_{INDPM} loop is preventing the supply from crashing.
- 3. The device has entered thermal regulation because the IC junction temperature has exceeded T_{.I/REG)}.
- 4. The battery voltage is less than V_{BATSHORT} .

During these events, the timer is slowed by half to extend the timer and prevent any false timer faults. Starting a new charge cycle by toggling inputs, toggling the $\overline{CE1/CE2}$ (bq24165) or \overline{CE} (bq24166/7) pins to disable/enable charge, resets the safety timer. Additionally, thermal shutdown events cause the safety timer to reset.

LDO OUTPUT (DRV)

The bq24165/6/7 contains a linear regulator (DRV) that is used to supply the internal MOSFET drivers and other circuitry. Additionally, DRV supplies up to 10mA external loads to power the STAT LED or the USB transceiver circuitry. The maximum value of the DRV output is 5.45V so it is ideal to protect voltage sensitive USB circuits. The LDO is on whenever a supply is connected to the IN or USB inputs of the bq24165/166. The DRV is disabled under the following conditions:

- 1. V_{SUPPLY} < UVLO
- 2. V_{SUPPLY} V_{BAT}< V_{SLP}
- 3. Thermal Shutdown

CHARGE PARAMETER SELECTOR INPUTS (CE1, CE2, bg24165)

The $\overline{\text{CE1}}$ and $\overline{\text{CE2}}$ inputs allow the user to easily implement the JEITA standard for systems where the battery pack temperature is monitored by the host. JEITA requires that several temperatures be monitored and the maximum charge voltage or charge current be modified based on the battery voltage. A graphical representation of the JEITA specification is shown in Figure 22.

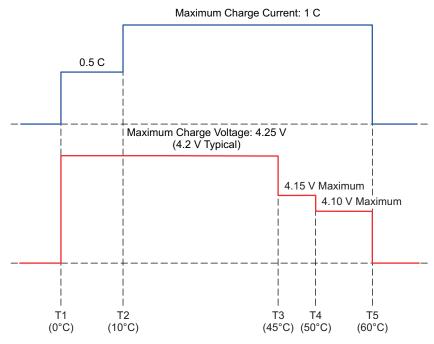


Figure 22. Charge Current During TS Conditions in Default Mode

In many systems, the battery temperature is monitored by the host and the information is used for several different operations. For these systems, the bq24165 method is ideal because it does not require the NTC in the battery to be shared amongst several different ICs. Instead, the CE1 and CE2 pins are driven by host GPIOs to reduce the charging current or charge voltage as required. This allows the host to decide which temperatures to change the charging profile and gives the ultimate flexibility to the user. Additionally, CE1 and CE2 are used to disable charging while not interfering with the main buck converter operation. The configuration table for CE1 and CE2 is shown in Table 2.

Table 2. CE1, CE2 Input Table

CE1	CE2	FUNCTION
0	0	Normal Charging
0	1	Charge current reduced by half
1	0	V _{BAT(REG)} reduced to 4.06 V
1	1	Charging Suspended

EXTERNAL NTC MONITORING (TS, bq24166/7)

The bq24166 and bq24167 provide a flexible, voltage based TS input for monitoring the battery pack NTC thermistor. The voltage at TS is monitored to determine that the battery is at a safe temperature during charging. For the bq24166, two temperature thresholds are monitored; the cold battery threshold ($T_{NTC} > 0^{\circ}C$) and the hot battery threshold ($T_{NTC} > 60^{\circ}C$). These temperatures correspond to the V_{COLD} and V_{HOT} thresholds. Charging is suspended and timers are suspended when $V_{TS} < V_{HOT}$ or $V_{TS} > V_{COLD}$.

To satisfy the JEITA requirements, the bq24167 monitors four temperature thresholds; the cold battery threshold ($T_{NTC} < 0^{\circ}C$), the cool battery threshold ($0^{\circ}C < TNTC < 10^{\circ}C$), the warm battery threshold ($45^{\circ}C < T_{NTC} < 60^{\circ}C$) and the hot battery threshold ($T_{NTC} > 60^{\circ}C$). These temperatures correspond to the V_{COLD} , V_{COOL} , V_{WARM} , and V_{HOT} thresholds. As with the bq24166, charging is suspended and timers are suspended when $V_{TS} < V_{HOT}$ or $V_{TS} > V_{COLD}$. When $V_{HOT} < V_{TS} < V_{WARM}$, the battery regulation voltage is reduced by 140mV from the programmed regulation threshold. When $V_{COOL} < V_{TS} < V_{COLD}$, the charging current is reduced to half of the programmed charge current.

The TS function is voltage based for maximum flexibility. Connect a resistor divider from DRV to GND with TS connected to the center tap to set the threshold. The connections are shown in Figure 24. The resistor values are calculated using the following equations:

$$RLO = \frac{V_{DRV} \times RCOLD \times RHOT \times \left[\frac{1}{V_{COLD}} - \frac{1}{V_{HOT}}\right]}{RHOT \times \left[\frac{V_{DRV}}{V_{HOT}} - 1\right] - RCOLD \times \left[\frac{V_{DRV}}{V_{COLD}} - 1\right]}$$

$$RHI = \frac{\frac{V_{DRV}}{V_{COLD}} - 1}{\frac{1}{RLO} + \frac{1}{RCOLD}}$$
(3)

Where:

$$V_{COLD} = 0.60 \times V_{DRV}$$

 $V_{HOT} = 0.30 \times V_{DRV}$

Where RHOT is the NTC resistance at the hot temperature and RCOLD is the NTC resistance at cold temperature.

For the bq24167, the WARM and COOL thresholds are not independently programmable. The COOL and WARM NTC resistances for a selected resistor divider are calculated using the following equations:

$$RCOOL = \frac{RLO \times 0.564 \times RHI}{RLO - RLO \times 0.564 - RHI \times 0.564}$$

$$RWARM = \frac{RLO \times 0.383 \times RHI}{RLO - RLO \times 0.383 - RHI \times 0.383}$$
(6)

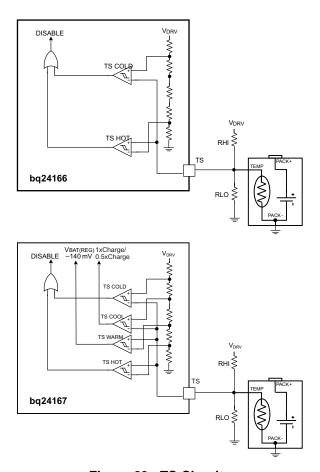


Figure 23. TS Circuits

THERMAL REGULATION AND PROTECTION

During the charging process, to prevent the IC from overheating, bq24165/6/7 monitors the junction temperature, T_J , of the die and begins to taper down the charge current once T_J reaches the thermal regulation threshold, T_{CF} . The charge current is reduced to zero when the junction temperature increases about 10°C above T_{CF} . Once the charge current is reduced, the system current is reduced while the battery supplements the load to supply the system. This may cause a thermal shutdown of the bq24165/6/7 if the die temperature rises too high. At any state, if T_J exceeds T_{SHTDWN} , bq24165/6/7 suspends charging and disables the buck converter. During thermal shutdown mode, PWM is turned off, and the timer is reset. The charging cycle resets when T_J falls below T_{SHTDWN} by approximately 10°C.

INPUT VOLTAGE PROTECTION IN CHARGE MODE

Sleep Mode

The bq24165/6/7 enters the low-power sleep mode if the voltage on V_{SUPPLY} falls below sleep-mode entry threshold, $V_{BAT}+V_{SLP}$, and V_{SUPPLY} is higher than the undervoltage lockout threshold, V_{UVLO} . This feature prevents draining the battery during the absence of V_{SUPPLY} . When $V_{SUPPLY} < V_{BAT}+V_{SLP}$, the bq24165/6/7 turns off the PWM converter, and turns the battery FET and BGATE on. Once $V_{SUPPLY} > V_{BAT}+V_{SLP}$, the device initiates a new charge cycle.

Input Voltage Based DPM

During normal charging process, if the input power source is not able to support the programmed or default charging current, the supply voltage decreases. Once the supply drops to $V_{\text{IN_DPM}}$ (set by IUSB_ for USB input or VDPM for IN input), the input current limit is reduced down to prevent the further drop of the supply. This feature ensures IC compatibility with adapters with different current capabilities without a hardware change. Figure 24 shows the V_{IN} -DPM behavior to a current limited source. In this figure the input source has a 750mA current limit and the charging is set to 750mA. The SYS load is then increased to 1.2A.

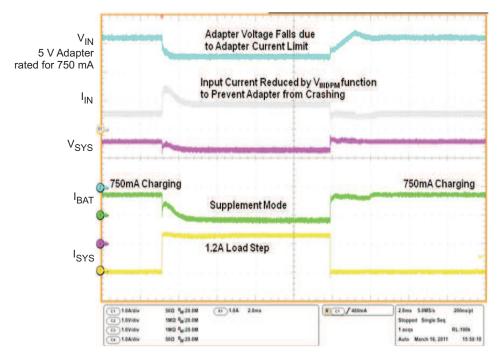


Figure 24. bq2416x V_{IN-DPM}

The V_{IN} -DPM threshold for the IN input is set using a resistor divider with VDPM connected to the center tap. Select $10k\Omega$ for the bottom resistor. The top resistor is selected using the following equation:

$$RTOP = \frac{10 \text{ k}\Omega \times (V_{\text{INDPM}} - V_{\text{DPM}})}{V_{\text{DPM}}}$$
(7)

Where V_{INDPM} is the desired V_{INDPM} threshold and V_{DPM} is the regulation threshold specified in the Electrical Characteristics table. Additionally, a small capictance (<0.01µF) may be added to VDPM if the layout is not ideal and significant noise exists on the VDPM line.

Bad Source Detection

When a source is connected to IN or USB, the bq2416x runs a Bad Source Detection procedure to determine if the source is strong enough to provide some current to charge the battery. A current sink is turned on (30mA for USB input, 75mA for the IN input) for 32ms. If the source is valid after the 32ms ($V_{BADSOURCE} < V_{SUPPLY} < V_{OVP}$), the buck converter starts up and normal operation continues. If the supply voltage falls below V_{BAD_SOURCE} during the detection, the current sink shuts off for two seconds and then retries. The detection circuit retries continuously until either a new source is connected to the other input or a valid source is detected after the detection time. If during normal operation the source falls to V_{BAD_SOURCE} , the bq2416x turns off the PWM converter, turns the battery FET on. Once a good source is detected, the device returns to normal operation.

If two supplies are connected, the IN supply is checked first. If the supply detection fails once, the device switches to USB for two seconds and then retries IN. This allows the supply to settle if the connection was jittery or the supply ramp was too slow to pass detection. If the supply fails the detection twice, it is locked out and the USB supply is used. Once the bad supply is locked out, it remains locked out until the supply voltage falls below UVLO. This prevents continuously switching between a weak supply and a good supply.

Input Over-Voltage Protection

The bq24165/6/7 provides over-voltage protection on the input that protects downstream circuitry. The built-in input over-voltage protection to protect the device and other components against damage from overvoltage on the input supply (Voltage from V_{USB} or V_{IN} to PGND). When $V_{SUPPLY} > V_{OVP}$, the bq24165/6/7 turns off the PWM converter, suspends the charging cycle and turns the battery FET and BGATE on. Once the OVP fault is removed, the device returns to the operation it was in prior to the OVP fault.

STATUS INDICATORS (CHG, PG)

The bq24165/6/7 contains two open-drain outputs that signal its status. The \overline{PG} output indicates that a valid input source is connected to USB or IN. \overline{PG} is low when $V_{SUPPLY} > V_{UVLO}$ AND $(V_{BAT} + V_{SLP}) < V_{SUPPLY} < V_{OVP}$. When there is no supply connected to either input within this range, \overline{PG} is high impedance. Table 3 illustrates the \overline{PG} behavior under different conditions.

The $\overline{\text{CHG}}$ output indicates new charge cycles. When a new charge cycle is initiated by $\overline{\text{CE1}}$ and $\overline{\text{CE2}}$, toggling High Impedance mode or toggling the input power, $\overline{\text{CHG}}$ goes low and remains low until termination. After termination, $\overline{\text{CHG}}$ remains high impedance until a new charge cycle is initiated. $\overline{\text{CHG}}$ does not go low during recharge cycles. Table 4 illustrates the $\overline{\text{CHG}}$ behavior under different conditions.

Connect \overline{PG} and \overline{CHG} to the DRV output through an LED for visual indication, or connect through a $100k\Omega$ pullup to the required logic rail for host indication.

Table 3. PG Status Indicator

CHARGE STATE	PG BEHAVIOR
V _{SUPPLY} < V _{UVLO}	High-Impedance
V _{SUPPLY} < (V _{BAT} +V _{SLP})	High-Impedance
$(V_{BAT}+V_{SLP}) < V_{SUPPLY} < V_{OVP}$	Low
VS _{UPPLY} > V _{OVP}	High-Impedance

Table 4. CHG Status Indicator

CHARGE STATE	CHG BEHAVIOR
Charge in progress Charging suspended by thermal loop	Low (first charge cycle) High-Impedance (recharge cycles)
Charge Done	
Recharge Cycle after Termination	
Timer Fault	High-Impedance
No Valid Supply	
No Battery Present	

APPLICATION INFORMATION

OUTPUT INDUCTOR AND CAPACITOR SELECTION GUIDELINES

When selecting an inductor, several attributes must be examined to find the right part for the application. First, the inductance value should be selected. The bq2416x is designed to work with 1.5µH to 2.2µH inductors. The chosen value will have an effect on efficiency and package size. Due to the smaller current ripple, some efficiency gain is reached using the 2.2µH inductor, however, due to the physical size of the inductor, this may not be a viable option. The 1.5µH inductor provides a good tradeoff between size and efficiency.

Once the inductance has been selected, the peak current must be calculated in order to choose the current rating of the inductor. Use Equation 8 to calculate the peak current.

$$I_{PEAK} = I_{LOAD(MAX)} \times \left(1 + \frac{\%_{RIPPPLE}}{2}\right)$$
 (8)

The inductor selected must have a saturation current rating higher than the calculated I_{PEAK} . Due to the high currents possible with the bq2416x, a thermal analysis must also be done for the inductor. Many inductors have 40°C temperature rise rating. This is the DC current that will cause a 40°C temperature rise above the ambient temperature in the inductor. For this analysis, the typical load current may be used adjusted for the duty cycle of the load transients. For example, if the application requires a 1.5A DC load with peaks at 2.5A for 20% of the time, a Δ 40°C temperature rise current must be greater than 1.7A:

$$I_{\text{TEMPRISE}} = I_{\text{LOAD}} + D \times (I_{\text{PEAK}} - I_{\text{LOAD}}) = 1.5 \text{ A} + 0.2 \times (2.5 \text{ A} - 1.5 \text{ A}) = 1.7 \text{ A}$$

The bq2416x provides internal loop compensation. Using this scheme, the bq2416x is stable with $10\mu\text{F}$ to $200\mu\text{F}$ of local capacitance. The capacitance on the SYS rail can be higher if distributed amongst the rail. To reduce the output voltage ripple, a ceramic capacitor with the capacitance between $10\mu\text{F}$ and $47\mu\text{F}$ is recommended for local bypass to SYS. A $47\mu\text{F}$ bypass capacitance on SYS is recommended to optimize the transient response.

PCB LAYOUT GUIDELINES

It is important to pay special attention to the PCB layout. Figure 25 provides a sample layout for the high current paths of the bq2416x.

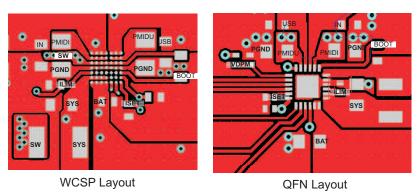
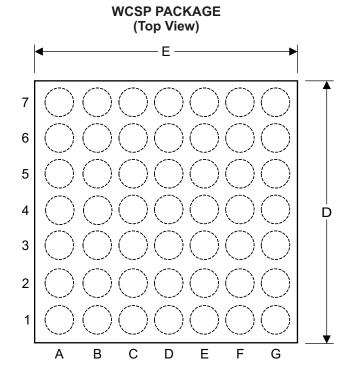


Figure 25. Recommended bg2416x PCB Layout



The following provides some guidelines:

- To obtain optimal performance, the power input capacitors, connected from the PMID input to PGND, must be placed as close as possible to the bg2416x
- The layout between BAT and the positive connector of the battery should be as short as possible to minimize
 resistance and inductance. If the parasitic inductance is expected to be significant, the bypass capacitance on
 BAT should be increased.
- Place 4.7µF input capacitor as close to PMID pin and PGND pin as possible to make high frequency current loop area as small as possible. Place 1µF input capacitor GNDs as close to the respective PMID cap GND and PGND pins as possible to minimize the ground difference between the input and PMID.
- The local bypass capacitor from SYS to GND should be connected between the SYS pin and PGND of the IC. The intent is to minimize the current path loop area from the SW pin through the LC filter and back to the PGND pin.
- Place ISET and ILIM resistors very close to their respective IC pins.
- Place all decoupling capacitor close to their respective IC pin and as close as to PGND (do not place components such that routing interrupts power stage currents). All small control signals should be routed away from the high current paths.
- The PCB should have a ground plane (return) connected directly to the return of all components through vias (two vias per capacitor for power-stage capacitors, one via per capacitor for small-signal components). It is also recommended to put vias inside the PGND pads for the IC, if possible. A star ground design approach is typically used to keep circuit block currents isolated (high-power/low-power small-signal) which reduces noise-coupling and ground-bounce issues. A single ground plane for this design gives good results. With this small layout and a single ground plane, there is no ground-bounce issue, and having the components segregated minimizes coupling between signals.
- The high-current charge paths into IN, USB, BAT, SYS and from the SW pins must be sized appropriately for the maximum charge current in order to avoid voltage drops in these traces. The PGND pins should be connected to the ground plane to return current through the internal low-side FET.
- For high-current applications, the balls for the power paths should be connected to as much copper in the board as possible. This allows better thermal performance as the board pulls heat away from the IC.

PACKAGE SUMMARY

(Top Side Symbol For bq24165)

TIYMLLLLS

bq24165

CHIP SCALE PACKAGE

O - Pin A1 Marker
TI -Texas Instruments Letters
YM - Year Month Date Code

LLLL - Lot Trace Code S - Assembly Site Code

CHIP SCALE PACKAGING DIMENSIONS

The bq2416x devices are available in a 49-bump chip scale package (YFF, NanoFreeTM). The package dimensions are:

- D = 2.78mm ± 0.05 mm
- E = 2.78mm ± 0.05 mm

REVISION HISTORY

CI	Changes from Original (December 2011) to Revision A					
•	Changed in ELECTRICAL CHARACTERISTICS, in row V _{IN_DPM_USB} , min, typ, max columns, from 4.55 to 4.35, 4.68 to 4.44 and 4.77 to 4.52 (had been changed)					
•	Changed I _{LIMIT} max from 2.5 A to 5.6 A	5				
•	Changed Table 1, last column, all 4.68 V to 4.44 V	16				
•	Added The battery voltage is less than V _{BATSHORT} to SAFETY TIMER section	17				

19-Apr-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
BQ24165RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ24165RGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ24165YFFR	ACTIVE	DSBGA	YFF	49	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
BQ24165YFFT	ACTIVE	DSBGA	YFF	49	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
BQ24166RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ24166RGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ24166YFFR	ACTIVE	DSBGA	YFF	49	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
BQ24166YFFT	ACTIVE	DSBGA	YFF	49	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
BQ24167RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ24167RGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ24167YFFR	ACTIVE	DSBGA	YFF	49	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
BQ24167YFFT	ACTIVE	DSBGA	YFF	49	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

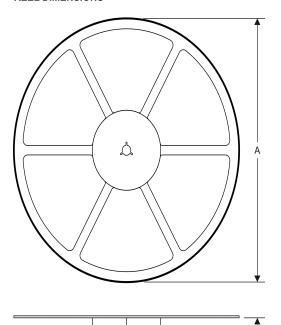
19-Apr-2012

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

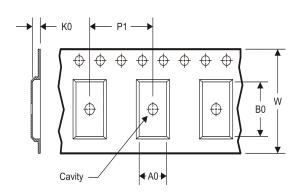
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL. Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

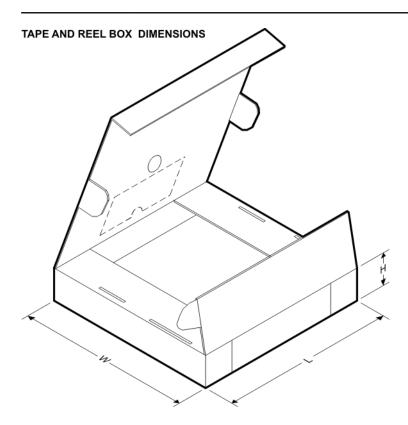
PACKAGE MATERIALS INFORMATION


www.ti.com 17-May-2012

TAPE AND REEL INFORMATION

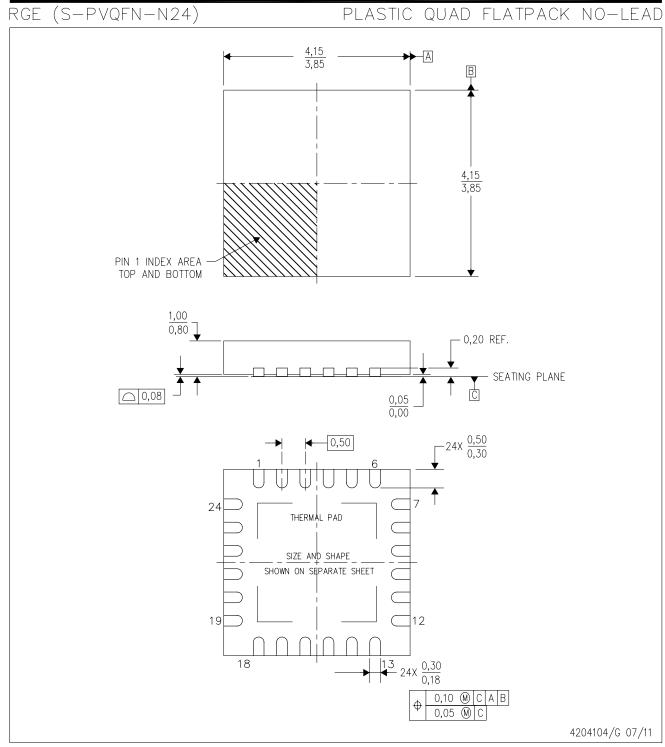
REEL DIMENSIONS

TAPE DIMENSIONS


A0	Dimension designed to accommodate the component width					
В0	Dimension designed to accommodate the component length					
K0	Dimension designed to accommodate the component thickness					
W	Overall width of the carrier tape					
P1	Pitch between successive cavity centers					

TAPE AND REEL INFORMATION

*All dimensions are nominal


All dimensions are nomina	AI .											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ24165RGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ24165RGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ24165YFFR	DSBGA	YFF	49	3000	180.0	8.4	2.93	2.93	0.81	4.0	8.0	Q1
BQ24165YFFT	DSBGA	YFF	49	250	180.0	8.4	2.93	2.93	0.81	4.0	8.0	Q1
BQ24166RGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ24166RGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ24166YFFR	DSBGA	YFF	49	3000	180.0	8.4	2.93	2.93	0.81	4.0	8.0	Q1
BQ24166YFFT	DSBGA	YFF	49	250	180.0	8.4	2.93	2.93	0.81	4.0	8.0	Q1
BQ24167RGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ24167RGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ24167YFFR	DSBGA	YFF	49	3000	180.0	8.4	2.93	2.93	0.81	4.0	8.0	Q1
BQ24167YFFT	DSBGA	YFF	49	250	180.0	8.4	2.93	2.93	0.81	4.0	8.0	Q1

www.ti.com 17-May-2012

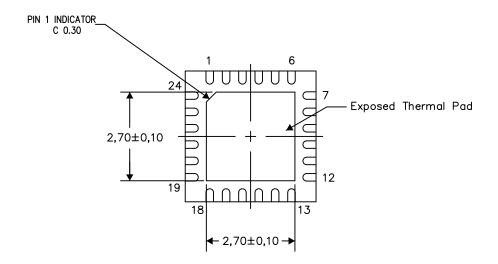
*All dimensions are nominal

i dimensions are nominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ24165RGER	VQFN	RGE	24	3000	346.0	346.0	29.0
BQ24165RGET	VQFN	RGE	24	250	210.0	185.0	35.0
BQ24165YFFR	DSBGA	YFF	49	3000	210.0	185.0	35.0
BQ24165YFFT	DSBGA	YFF	49	250	210.0	185.0	35.0
BQ24166RGER	VQFN	RGE	24	3000	346.0	346.0	29.0
BQ24166RGET	VQFN	RGE	24	250	210.0	185.0	35.0
BQ24166YFFR	DSBGA	YFF	49	3000	210.0	185.0	35.0
BQ24166YFFT	DSBGA	YFF	49	250	210.0	185.0	35.0
BQ24167RGER	VQFN	RGE	24	3000	346.0	346.0	29.0
BQ24167RGET	VQFN	RGE	24	250	210.0	185.0	35.0
BQ24167YFFR	DSBGA	YFF	49	3000	210.0	185.0	35.0
BQ24167YFFT	DSBGA	YFF	49	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGE (S-PVQFN-N24)


PLASTIC QUAD FLATPACK NO-LEAD

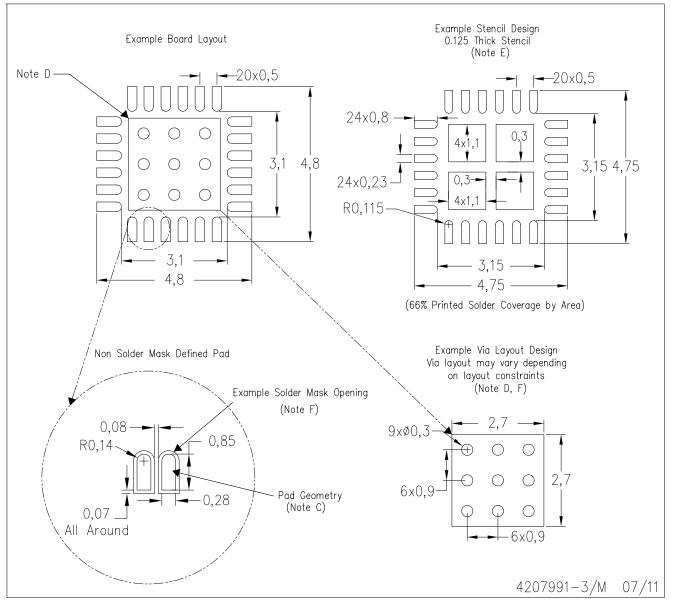
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

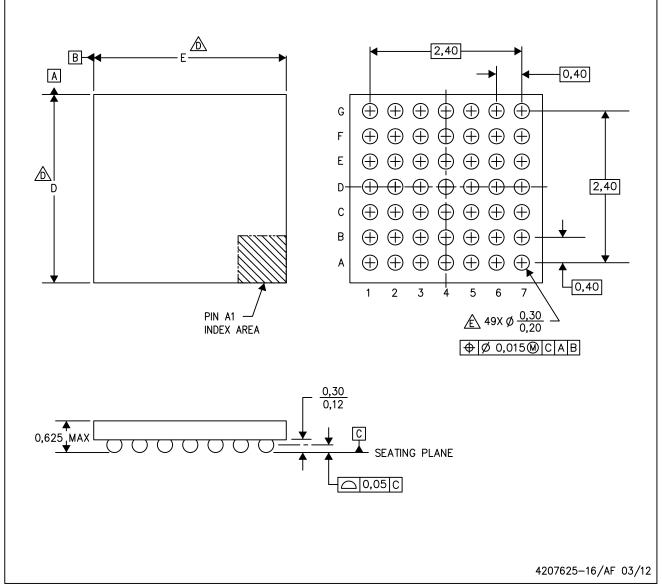
Bottom View
Exposed Thermal Pad Dimensions


4206344-4/AA 04/12

NOTES: A. All linear dimensions are in millimeters

RGE (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

YFF (R-XBGA-N49)

DIE-SIZE BALL GRID ARRAY

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. NanoFree™ package configuration.
 - The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
 - E. Reference Product Data Sheet for array population.7 x 7 matrix pattern is shown for illustration only.
 - F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

TI E2E Community Home Page

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

e2e.ti.com