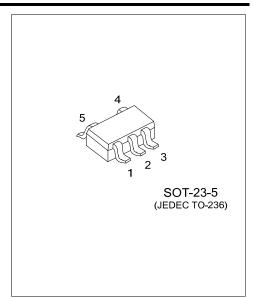


UNISONIC TECHNOLOGIES CO., LTD

LR1198 **Preliminary CMOS IC**

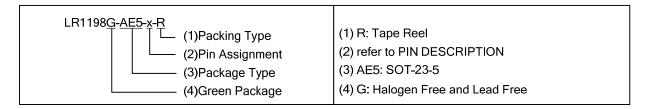

300mA, ULTRA-LOW NOISE, **ULTRA-FAST CMOS LDO** REGULATOR

DESCRIPTION

The LR1198 low-noise, low-dropout, linear regulator operates from a 2.5V to 5.5V input and is guaranteed to deliver 300mA. The LR1198 is designed and optimized for battery-powered systems to work with low noise and low quiescent current. For further reduction of output noise, a noise bypass pin is available.

The LR1198 also requires only 1µF (typ.) of output capacitance for stability with any load, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices.

The LR1198 consumes less than 0.01µA in shutdown mode. The other features include ultra low dropout voltage, current limiting protection, thermal shutdown protection and high ripple rejection ratio.

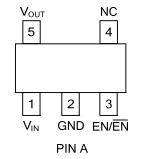


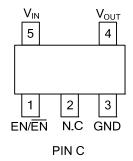
FEATURES

- * 300mA Guaranteed Output Current
- * 0.01µA Shutdown Current
- * 220mV Dropout at 300mA Load
- * Low Temperature Coefficient
- * Current Limiting Protection
- * Thermal Shutdown Protection
- * Only 1µF Output Capacitor Required for Stability
- * Excellent Line/Load Transient

ORDERING INFORMATION

Ordering Number	Package	Packing
LR1198G-AE5-x-R	SOT-23-5	Tape Reel

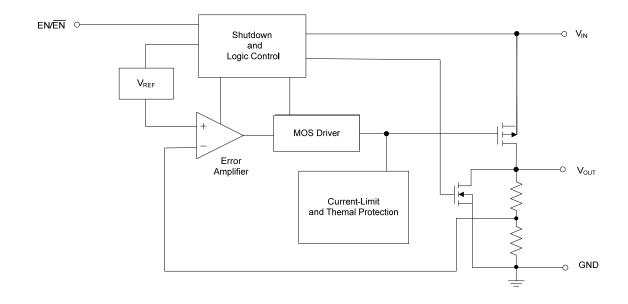



www.unisonic.com.tw 1 of 4

MARKING

PACKAGE	VOLTAGE CODE	MARKING		
SOT-23-5	15: 1.5V	SAXX Voltage Code		

■ PIN CONFIGURATION



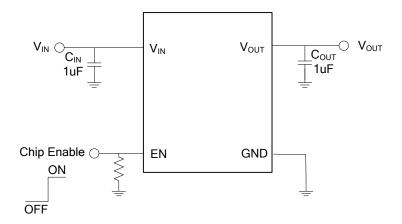
■ PIN DESCRIPTION

PIN NO		PIN NAME	DESCRIPTION	
Α	С	PIN NAIVIE	DESCRIPTION	
1	5	V_{IN}	Power Input Voltage	
2	3	GND	Ground	
3	1	EN/EN	Chip Enable (Active High). Note that this pin is high impedance. There should be a pull low $100k\Omega$ resistor connected to GND when the control signal is floating.	
4	2	N.C		
5	4	V _{OUT}	Output Voltage	

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Input Voltage (Operating)	\/	2.5 ~ 5.5	\/
Supply Input Voltage (Survival)	V _{IN}	-0.3 ~ +6	V
Junction Temperature	TJ	+125	°C
Operation Temperature Range	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C


■ ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT} + 1V, C_{IN} = C_{OUT} = 1uF, C_{BP} = 10nF, T_A = 25$ °C, unless otherwise specified)

(111) 1001 11, 011 0001 141, 0	Dr TOTTI,	ra 20 0; dinece caner mee epecinear	<u> </u>			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage Accuracy	ΔV_{OUT}	I _{OUT} = 1mA	-2		+2	%
Current Limit	I _{LIM}	$R_{LOAD} = 1\Omega$	360	400		mA
Quiescent Current	IQ	V _{EN} ≥1.2V, I _{OUT} = 0mA		90	130	μΑ
Dropout Voltage (Note 3)	\ /	I _{OUT} = 200mA		500	600	mV
	V_{DROP}	I _{OUT} = 300mA		550	650	
Line Regulation	ΔV_{LINE}	$V_{IN} = (V_{OUT} + 0.3V)$ to 5.5V			0.3	%
		I _{OUT} = 1mA			0.5	
Load Regulation	ΔV_{LOAD}	1mA < I _{OUT} < 300mA			0.6	%
Standby Current	I _{STBY}	V _{EN} = GND, Shutdown		0.01	2	μΑ
EN Input Bias Current	I _{EN}	V _{EN} = GND or VIN		0	1	uA
EN Threshold	V_{IH}	V _{IN} = 3 ∼ 5.5V, Start-Up	1.2			V
	V_{IL}	$V_{IN} = 3 \sim 5.5V$, Shutdown			0.4	V
Output Noise Voltage	e _{NO}	10Hz to 100kHz, I _{OUT} = 200mA		100		μV_{RMS}
		C _{OUT} = 1µF				
Power Supply Rejection Rate	PSRR	$C_{OUT} = 1\mu F$, $I_{OUT} = 10mA$, $f=10kHz$		-50		dB
Thermal Shutdown Temperature	T_{SD}			165		°C
Thermal Shutdown Temperature	ΛТ			30		°C
Hysteresis	ΔT_{SD}			30		

- Notes: 1. Limits beyond which damage to the device may occur is indicated by absolute maximum ratings. Conditions for which the device is intended to be functional is indicated by operating ratings, but specific performance limits isn't be guaranteed. Only for the test conditions listed the guaranteed specifications can be applied. When the device is not operated under the listed test conditions some performance characteristics may degrade.
 - 2. Which discharged through a $1.5k\Omega$ resistor into each pin is a 100pF capacitor in the human body model.
 - 3. The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} is $V_{OUT(NORMAL)}$ 100mV.

■ TYPICAL APPLICATION CIRCUIT

■ APPLICATIONS INFORMATION

Enable Function

The **LR1198** has an enable/disable function. Force EN high (>1.2V) enables the V_{OUT} ; force EN low (<0.4V) disables the V_{OUT} . For to protecting the system, the **LR1198** have a quick-discharge function. If it is not used, connect to VIN for normal operation.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.