Description

One and two pole thermal-magnetic circuit breaker in compact design with slide actuator, trip-free mechanism, various trip characteristics and optional auxiliary contacts.

Meets the requirements of the circuit breaker standard EN 60934 (IEC 60934): S-type, TM.

Typical applications

Protection of AC and DC control circuits in industrial automation applications and buildings, e.g. in the chemical industry, power plants, steel industry and machine construction (machine tools, packing machines etc.)

Ordering information

```
Type no:
2216 thermal-magnetic circuit breaker
    Mounting method
    S1 plug-in mounting
        Number of poles
        1 1-pole
        2 2-pole
        Additional function / accessories
        O without
            Main terminals
            P1 blade terminals A6.3 x 0.8 with polarising
                        tooth (standard)
                            Characteristic curve
                                F1 therm. 1.01-1.4 x IN
                                F2 therm. 1.01-1.4 x IN ; magn. 3-6 x IN AC / 4-8 I IN DC
                                M1 therm. 1.01-1.4 < I IN; magn. 6-12 x 利 AC / 8-15 IN DC
                        Auxiliary contacts
                    S0 without auxiliary contact
                    S1 with auxiliary contact
                            Auxiliary contact function
                            0 without
                            1 change-over
                        Auxiliary contact terminals
                            0 without
                            1 blade terminals A6.3 x 0.8
                            with polarising tooth (standard)
                            Voltage rating
                            A \leqAC 277 V, \leq DC 80 V
                            Current ratings
                            0.5....16 A
2216-S1 1 0 - P1 F1- S1 1 1-A-16A Ordering example
```

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.5	5.0	6	0.05
1	1.1	8	≤ 0.02
2	0.3	10	≤ 0.02
3	0.14	12	≤ 0.02
4	0.09	15	≤ 0.02
5	0.06	16	≤ 0.02

Technical data

Voltage rating	AC 240 V ($50 / 60 \mathrm{~Hz}$); DC 50 V (1-pole) DC 80 V (2-pole)
Current rating range	0.5... 16 A
Auxiliary circuit	AC $240 \mathrm{~V}, 0.5 \mathrm{~A}$ (VDE) AC $277 \mathrm{~V}, 0.5 \mathrm{~A}$ (UL) DC $50 \mathrm{~V}, 1 \mathrm{~A}$ (VDE/UL)
Typical life	6,000 operations at $1 \times \mathrm{IN}$ 3,000 operations at $1 \times \mathrm{IN}$ DC 80 V , 2-pole
Ambient temperature	$-30 . . .60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 60664)	$2,5 \mathrm{kV} / 2$ re-inforced insulation in operating area
Dielectric strength operating area main/aux. circuit	test voltage AC $3,000 \mathrm{~V}$ test voltage AC $1,500 \mathrm{~V}$
Open aux. circuit	AC 1,000 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)
Interrupting capacity I_{cn}	AC 240 V 1-pole 300 A DC 32 V 1-pole 1500 A DC 50 V 1-pole 600 A AC 240 V 2-pole 400 A DC 32 V 2-pole 1500 A DC 80 V 2-pole 600 A
Interrupting capacity (UL 1077)	AC 277 V $1,000 \mathrm{~A}$ DC 50 V 1-pole $1,000 \mathrm{~A}$ DC 80 V 2-pole $1,000 \mathrm{~A}$
Degree of protection (IEC 60529)	operating area IP30 terminal area IPOO
Vibration curve F1: curves F2, M1:	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) ; \\ & 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { test to IEC } 60068-2-6, \text { test Fc, } \\ & 10 \text { frequency cycles per axis } \end{aligned}$
Shock curve F1: curves F2, M1:	15 g (11 ms) for shock direction 1-6 $30 \mathrm{~g}(11 \mathrm{~ms})$ for shock direction 1-6 test to IEC 60068-2-27, test Ea
Corrosion	96 hrs in 5% salt mist, test to IEC 60068-2-11, test Ka
Humidity	240 hrs in 95 \% RH, test to IEC 60068-2-78, test Cab
Mass	approx. 25 g (per pole with aux. contact)

E-TA Thermal-Magnetic Circuit Breaker 2216-S...

Approvals

Authority	Standard	Voltage ratings	Current ratings
CSA	C22.2 No. 235	$\begin{aligned} & \text { AC } 277 \mathrm{~V} \\ & \text { DC } 50 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	0.1... 16 A (1-, 2-pole) $0.1 \ldots 16 \mathrm{~A}$ (1-pole) $0.1 \ldots 16 \mathrm{~A}$ (2-pole)
VDE	IEC / EN 60934	AC 240 V DC 50 V DC 80 V	0.1...16 A (1-, 2-pole) 0.1..16 A (1-pole) $0.1 \ldots 16$ A (2-pole)
UL	$\begin{aligned} & \text { UL } 1077 \\ & \text { C22.2 No } 235 \end{aligned}$	$\begin{aligned} & \text { AC } 277 \mathrm{~V} \\ & \text { DC } 50 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	$0.1 \ldots 16$ A (1-, 2-pole) $0.1 . .16$ A (1-pole) $0.1 \ldots .16$ A (2-pole)
GL	IEC / EN 60934	$\begin{aligned} & \text { AC } 240 \mathrm{~V} \\ & \text { DC } 50 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	0.1...16 A (1-, 2-pole) $0.1 \ldots 16 \mathrm{~A}(1-, 2$-pole $)$ $0.1 . .16 \mathrm{~A}$ (2-pole)
UL *)	UL 60947-4-1A C22.2 No 60947-4-1	$\begin{aligned} & \text { AC } 277 \mathrm{~V} \\ & \text { DC } 50 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	0.1... 10 A (1-, 2-pole) $0.1 \ldots 16 \mathrm{~A}$ (1-pole) $0.1 \ldots 10 \mathrm{~A}$ (2-pole)

*) cULus (listed) using with socket 80PLUS or socket 81PLUS
Schematic diagram

Dimensions 2216-S1

Shock directions

Dimensions 2216-S11 with socket 80plus

Dimensions 2216-S11 with socket 81plus

Envelope size to DIN 43880

The envelope size of type 2216-S with socket 80 plus or 81 plus complies with the requirements of DIN 43880 (built-in equipment for electrical installation).

Envelope size to DIN 43880 (Size 1)

Envelope size 2216-S with Envelope size 2216-S with

E-TVA Thermal-Magnetic Circuit Breaker 2216-S...

Time/current characteristics

${ }^{1)}$ Magnetic tripping currents are or the curves M1 and F2 are increased by 30% on DC supplies.
When mounted side-by-side, the breakers can only carry up to 80% of their rated or a higher rating should be selected (please also see Technical Information).

The time current characteristic curve depends on the ambient temperature. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below (please also see Technical Information).											Caution: High inrush peaks of $<0.003 \mathrm{sec}$. may trip the breaker.
Ambient temperature ${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	10	23	30	40	50	60	
Derating factor	0.76	0.79	0.83	0.88	0.93	1	1.04	1.12	1.22	1.35	

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

E-T.Å 2216-S... - Accessories/Socket 80plus

Description

Single pole, with PT connection technology, to accommodate 1- or 2-pole circuit breakers type 2216-S

Part number: 80PLUS-PT01

- Push-in design: push the stripped wire (cross section $\geq 0.25 \mathrm{~mm}^{2}$, rigid or with wire end ferrule) into the round hole of the terminal without using a tool
- For smaller cable cross sections or flexible wires without wire end ferrule you have to push in the orange push button to open the spring.
- For release push in the orange push button with a screw driver.

Dimensions

Line connection

1	Supply
$2.1 / 2.2$	Power distribution
11 (a)	Change-over contact
14 (c)	
12 (c)	

Cable cross section

	Cross section when opening the push-in terminal		Cable cross section directly pluggable		stripped wire length
terminal 1 (line)	- rigid: - flexible: - flexible with wire end ferrule: (with plastic sleeve) - flexible with wire end ferrule: (without plastic sleeve) - flexible with TWIN-wire end ferrule	0.5... $6 \mathrm{~mm}^{2}$ $0.5 \ldots 6 \mathrm{~mm}^{2}$ $0.5 \ldots 6 \mathrm{~mm}^{2}$ ($10 \mathrm{~mm}^{2}$) $0.5 \ldots 6 \mathrm{~mm}^{2}$ $0.5 \ldots 1 \mathrm{~mm}^{2}$	- rigid - flexible with wire end ferrule: (with plastic sleeve) - flexible with wire end ferrule: (without plastic sleeve)	$\begin{aligned} & 1 \ldots 6 \mathrm{~mm}^{2} \\ & 0.5 \ldots 6 \mathrm{~mm}^{2} \\ & \left(10 \mathrm{~mm}^{2}\right) \\ & 0.5 \ldots . \mathrm{mm}^{2} \end{aligned}$	12 mm
terminals 2.1 and 2.2 (load)	- rigid: - flexible: - flexible with wire end ferrule: (with plastic sleeve) - flexible with wire end ferrule: (without plastic sleeve) - flexible with TWIN-wire end ferrule:	0.2... $6 \mathrm{~mm}^{2}$ $0.2 \ldots 4 \mathrm{~mm}^{2}$ $0.25 \ldots 4 \mathrm{~mm}^{2}$ $0.25 \ldots 4 \mathrm{~mm}^{2}$ $0.5 \ldots 1 \mathrm{~mm}^{2}$	- rigid: - flexible with wire end ferrule: (with plastic sleeve) - flexible with wire end ferrule: (without plastic sleeve)	$\begin{aligned} & 0.5 \ldots 6 \mathrm{~mm}^{2} \\ & 0.75 \ldots 4 \mathrm{~mm}^{2} \\ & \\ & 0.5 \ldots 4 \mathrm{~mm}^{2} \end{aligned}$	12 mm
terminals 11, 12 and 14 (signalling)	- rigid: - flexible: - flexible with wire end ferrule: (with plastic housing) - flexible with wire end ferrule: (without plastic sleeve)	$\begin{aligned} & 0.14 \ldots 1.5 \mathrm{~mm}^{2} \\ & 0.14 \ldots 1.5 \mathrm{~mm}^{2} \\ & 0.14 \ldots 1.5 \mathrm{~mm}^{2} \\ & 0.14 \ldots 1 \mathrm{~mm}^{2} \end{aligned}$	- rigid: - flexible with wire end ferrule: (with plastic housing) - flexible with wire end ferrule: (without plastic sleeve)	$\begin{aligned} & 0.25 \ldots 1.5 \mathrm{~mm}^{2} \\ & 0.34 \ldots 1.5 \mathrm{~mm}^{2} \\ & \\ & 0.34 \ldots 1 \mathrm{~mm}^{2} \end{aligned}$	8 mm

E E-T『A゚ 2216-S... - Accessories/Socket 80plus

Insertion of busbars/jumpers

Coding of circuit breaker 2216-S and socket 80plus following the lock-key-principle

Replacing a circuit breaker

Application examples

Common line entry

Series connection of auxiliary contacts

Parallel connection of auxiliary contacts
cross bridging terminals 11 (a)

Note:
Terminals 14 (c) are also bridged, but are not required.

E-TAR 2216-S... - Accessories/Socket 81plus

Description

Single pole, with screw terminals, to accommodate 1- and 2-pole circuit breakers type 2216-S

Part number: 81PLUS-UT01

Dimensions

Line connection

1	Supply	
2	Power distribution	
11 (a)		
	Change-over contact	14
(c)		12
(c)		11

Cable cross section

	thread size	max. cable cross section		stripped wire length	tightening torque
terminals 1 (line) and 2 (load)	M4	Wire - rigid (single-wire or multistrand) - flexible: - flexible with wire end ferrule: (with and without plastic sleeve) - flexible with TWIN-wire end ferrule: Multi-lead connection (two wires with identical cross section) - rigid (single-wire or multistrand) - flexible: - flexible with TWIN-wire end ferrule (without plastic sleeve)	$0.5 \ldots 16 \mathrm{~mm}^{2}$ $0.5 \ldots 10 \mathrm{~mm}^{2}$ $0.5 \ldots 10 \mathrm{~mm}^{2}$ $0.5 \ldots 6 \mathrm{~mm}^{2}$ $0.5 \ldots 4 \mathrm{~mm}^{2}$ $0.5 \ldots 4 \mathrm{~mm}^{2}$ $0.5 \ldots 2.5 \mathrm{~mm}^{2}$	10 mm	1.2 Nm
terminals 11, 12 and 14 (signalling)	M3	Wire - rigid: - flexible: - flexible with wire end ferrule: (with and without plastic sleeve) Multi-lead connection (two wires with identical cross section) - rigid: - flexible: - flexible with TWIN AEH: (with plastic sleeve) - flexible with AEH: (without plastic sleeve)	$0.14 \ldots 4 \mathrm{~mm}^{2}$ $0.14 \ldots 4 \mathrm{~mm}^{2}$ $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ 0.14... $1.5 \mathrm{~mm}^{2}$ $0.14 \ldots 1.5 \mathrm{~mm}^{2}$ $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ $0.14 \ldots 1.5 \mathrm{~mm}^{2}$	9 mm	0.5 Nm

E E-T『A゚ 2216-S... - Accessories/Socket 81plus

Insertion of busbars/jumpers

Coding of circuit breaker 2216-S and socket 81plus following the lock-key-principle

Replacing a circuit breaker

Application examples

Series connection of auxiliary contacts

Parallel connection of auxiliary contacts
cross bridging
terminals 11 (a)

Note:
Terminals 14 (c) are also bridged, but are not required

ETVAR 2216-S... - Accessories - socket 80/81plus

Accessories

Accessories for Socket 80plus and Socket 81plus	part number	packing qty
busbar, for cross-bridging in the bridge shaft, red, 2 poles *	Y 31062401	50
busbar, for cross-bridging in the bridge shaft, red, 4 poles *	Y 31062501	50
busbar, for cross-bridging in the bridge shaft, red, 10 poles *	Y 30882311	10
busbar, for cross-bridging in the bridge shaft, blue, 2 poles *	Y 31062402	50
busbar, for cross-bridging in the bridge shaft, blue, 4 poles *	Y 31062502	50
busbar, for cross-bridging in the bridge shaft, blue, 10 poles *	Y 30882312	10
busbar, for cross-bridging in the bridge shaft, grey, 2 poles *	Y 31062403	50
busbar, for cross-bridging in the bridge shaft, grey, 10 poles *	Y 30882313	10
coding star, red, with 4 coding pins each	Y 31062601	50
label	X 22297750	50
busbar/jumper, 10 poles coding star	label	

* Max. bridge current: 32 A

When using two busbars/jumpers (in both bridge shafts of terminal 1), the max. current capacity is 41 A .
Caution:
When using busbars/jumpers for bridging the aux. contacts $(11(\mathrm{a}), 12(\mathrm{~b})$ and $14(\mathrm{c}))$, the max. bridge current is 4 A

Coding table

Breaker-socketcoding for the circuit protector with the highest current rating	Coding example: Avoid hazardous oversize current ratings Your benefit: Coded circuit breakers can no longer be inserted into slots with a lower current rating coding.					Coding of circuit breakers and sockets Sockets: Insert coding pins in accordance with coding table into receptacles of the sockets. Circuit breakers: Remove coding pins in accordance with coding table by means of screw
	Coding t				Example	
	Breaker	1	1	1	10 A	
	Socket	0	0	0		\square
	Breaker	1	1	0	8 A	
	Socket	0	0	1		-
	Breaker	1	0	1	6 A	$\sim \quad 011$
	Socket	0	1	0		- $\quad \Pi^{\circ} \mathrm{cos}$
	Breaker	1	0	0	4 A	-r-r
	Socket	0	1	1		
	Breaker	0	1	1	3 A	
	Socket	1	0	0		,
	Breaker	0	1	0	2 A	-
	Socket	1	0	1		- 11
Breaker-socket-	Breaker	0	0	1	1 A	
coding for the circuit	Socket	1	1	0		(1) 5
protector with the lowest current rating	Breaker	0	0	0	0.5 A	
	Socket	1	1	1		
	1: With PIN / 0: No PIN					

