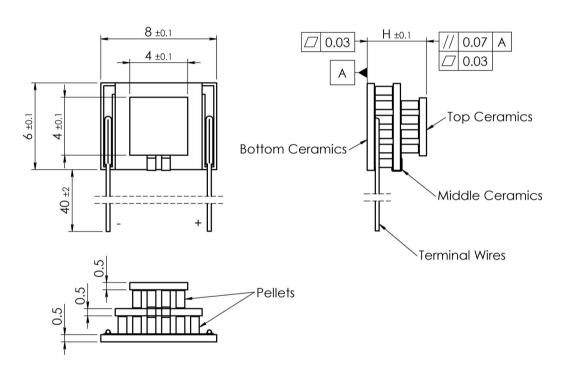

Performance Parameters


2MC06-023-XX

Туре	ΔT _{max}	Q _{max}	I _{max}	U _{max}	AC R Ohm	H mm
	2MC	06-023-	xx (N=23)		
2MC06-023-03	93	2.51	4.2		0.41	2.3
2MC06-023-05	96	1.60	2.5		0.64	2.7
2MC06-023-08	97	1.03	1.6	2.1	1.01	3.3
2MC06-023-10	98	0.84	1.3	2.1	1.26	3.7
2MC06-023-12	98	0.71	1.1		1.51	4.1
2MC06-023-15	99	0.57	0.9		1.87	4.7

Performance data are given for 300K, vacuum

Dimensions

Manufacturing options

A. TEC Assembly:

- * 1. Solder SnSb (T_{melt}=230°C)
 - 2. Solder AuSn (T_{melt}=280°C)

B. Ceramics:

- * 1.Pure Al₂O₃(100%)
 - 2. Alumina (Al₂O₃-96%)
 - 3. Aluminum Nitride (AIN)
- * used by default

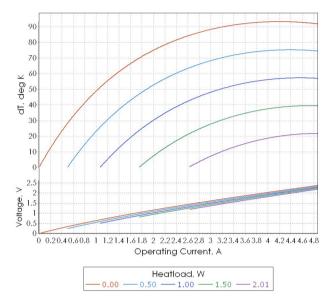
C. Ceramics Surface Options:

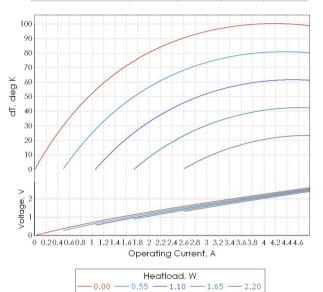
- 1. Blank ceramics (not metallized)
- 2. Metallized (Au plating)
- 3. Metallized and pre-tinned with:
 - 3.1 Solder 117 (In-Sn, T_{melt} =117°C)
 - 3.2 Solder 138 (Sn-Bi, T_{melt} = 138°C)
 - 3.3 Solder 143 (In-Ag, T_{melt} = 143°C)
 - 3.4 Solder 157 (In, $T_{melt} = 157^{\circ}C$)
 - 3.5 Solder 183 (Pb-Sn, T_{melt} = 183°C)
 - 3.6 Optional (specified by Customer)

D. Thermistor (optional)

Can be mounted to cold side ceramics edge. Calibration is available by request.

E. Terminal contacts

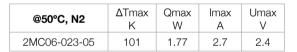

- 1. Blank, tinned Copper
- 2. Insulated Wires
- 3. Insulated, color coded

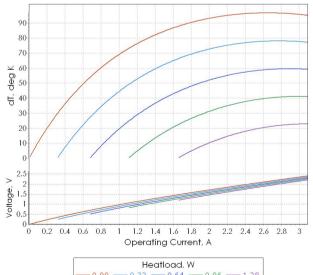

Performance Data

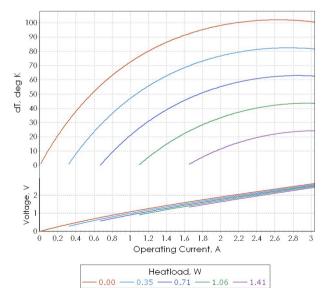
2MC06-023-<u>03</u>

@ 27°C, Vacuum	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-03	93	2.51	4.2	2.1

@50°C, N2	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-03	100	2.76	4.2	2.4

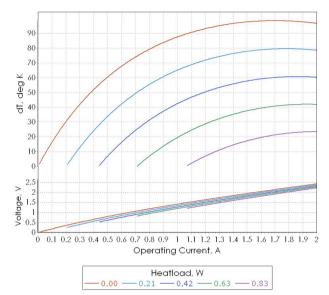


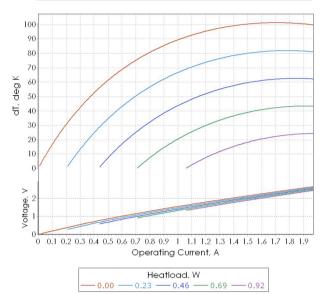

Note: Performance data is specified for optimal optimal conditions (TEC hot side is stabilized at ambient temperature). Heatsink thermal resistance is not included into estimations. Use TECCad Software for estimations under different conditions.


Performance Data

2MC06-023-05

@ 27°C, Vacuum	ΔTmax	Qmax	Imax	Umax
	K	W	A	V
2MC06-023-05	96	1.60	2.7	2.1

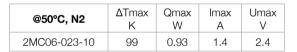

Note: Performance data is specified at optimal optimal conditions (TEC hot side is stabilized at ambient temperature). Any heatsink thermal resistance is not included into estimations. Use TECCad Software for estimations under different conditions.

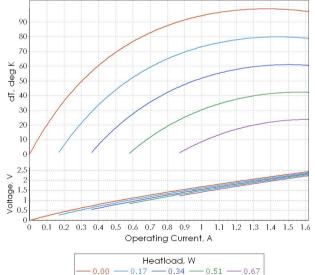

Performance Data

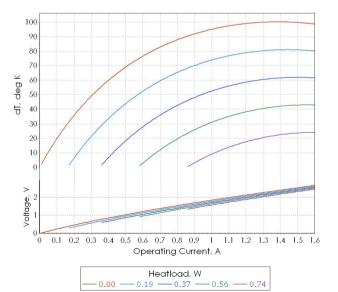
2MC06-023-08

@ 27°C, Vacuum	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-08	97	1.03	1.7	2.1

@50°C, N2	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-08	100	1.15	1.7	2.4

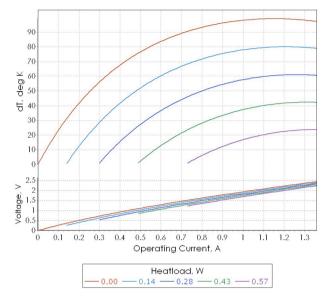


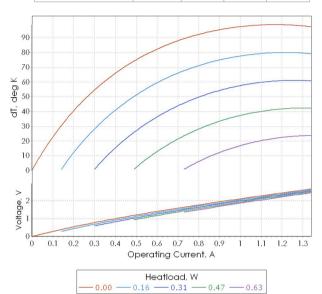

Note: Performance data is specified for optimal optimal conditions (TEC hot side is stabilized at ambient temperature). Heatsink thermal resistance is not included into estimations. Use TECCad Software for estimations under different conditions.


Performance Data

2MC06-023-10

@ 27°C, Vacuum	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-10	98	0.84	1.4	2.1


Note: Performance data is specified for optimal optimal conditions (TEC hot side is stabilized at ambient temperature). Heatsink thermal resistance is not included into estimations. Use TECCad Software for estimations under different conditions.


Performance Data

2MC06-023-<u>12</u>

@ 27°C, Vacuum	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-12	98	0.71	1.2	2.1

@50°C, N2	ΔTmax	Qmax	lmax	Umax
	K	W	A	V
2MC06-023-12	98	0.78	1.2	2.4

Note: Performance data is specified for optimal optimal conditions (TEC hot side is stabilized at ambient temperature). Heatsink thermal resistance is not included into estimations. Use TECCad Software for estimations under different conditions.

Performance Data

@ 27°C, Vacuum

2MC06-023-15

Imax

Umax

	11	V V		V
2MC06-023-15	99	0.57	0.9	2.1
90				
80				
70				
≥ 60				
Φ 50				
¥ 60 ♥ 50 □ 40				
30				
20				
10				
0				
2.5				
> 2.0				
⊕ 1.5 □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
> 2 6 1.5 0 0.5				
0	.4 0.5	0.6 0.7	0.8 0.9	9 1
	perating C		0.0	
	Heatload	d W		1

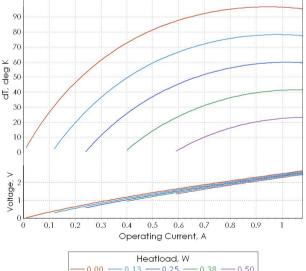
ΔTmax

Κ

Qmax

W

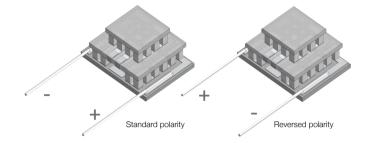
Imax


Α

Umax

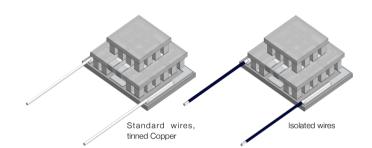
Qmax

ΔTmax

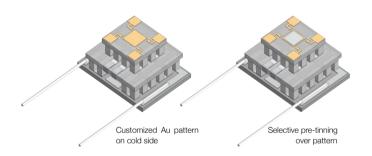

Note: Performance data is specified for optimal optimal conditions (TEC hot side is stabilized at ambient temperature). Heatsink thermal resistance is not included into estimations. Use TECCad Software for estimations under different conditions.

Additional Options

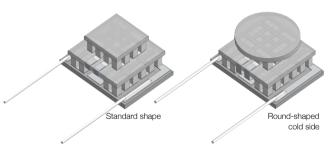
TEC Polarity


TEC Polarity can be modified by request. The specified polarity in this datasheet is typical.

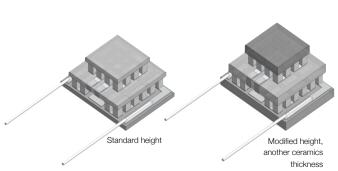
It can be reversed in accordance to Customer application requirements.


Terminal Wires Options

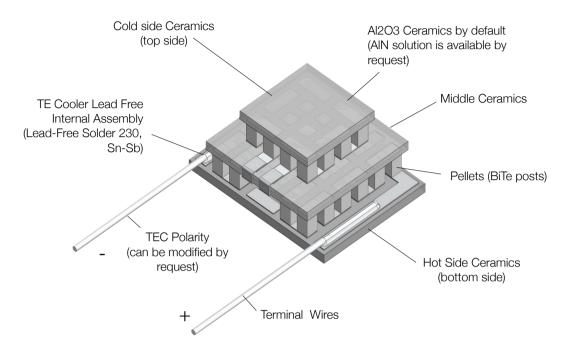
The wires are of tinned Copper, blank (not isolated) by default. Various options for isolated wires are available by request. The available solutions include isolated wires, isolated color-coded wires, flexible multicore wires and more.


Customized Au Patterns

Customized Au patterns on thermoelectric cooler cold side are available by request. Selective Pretinning over pattern is also available. Please, contact RMT Ltd for additional information about customized Au patterns requirements.


Cold Side modification

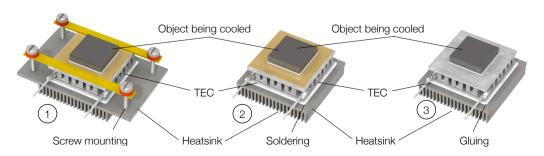
TEC Cold Side can be modified by request. The dimensions and shape of 2-stage thermoelectric cooler can be revised to Customer application. RMT Ltd has full-featured flexibility in TEC design and modification.



TEC Height modification

Standard 2-stage TEC height can be modified without performance changes by using ceramics of different thickness. Standard 2-stage thermoelectric cooler height (specified in this datasheet) may be modified in a range -0.75..+1.5mm by request.

Thermoelectric Cooler Overview



Application Tips

- 1. Never heat TE module more than 200°C (TEC assembled at 230°C).
- 2. Never use TE module without an attached heat sink at hot (bottom) side.
- Connect TE module to DC power supply according to polarity.
- 2. Do not apply DC current higher than Imax.

Installation

- 1. <u>Mechanical Mounting</u>. TEC is placed between two heat exchangers. This construction is fixed by screws or in another mechanical way. It is suitable for large modules (with dimensions 30x30mm and larger). Miniature types require other assembling methods in most cases.
- 1. <u>Soldering</u>. This method is suitable for a TE module with metallized outside surfaces. RMT provides this option and also makes pre-tinning for TE modules.
- 2. <u>Glueing</u>. It is an up-to-date method that is used by many customers due to availability of glues with good thermoconductive properties. A glue is usually based on some epoxy compound filled with some thermoconductive material such as graphite or diamond powders, silver, SiN and others. The application of a specific type depends on application features and the type of a TE module.

Contacts

RMT Ltd. Headquarters

Warshavskoe sh. 46, 115230, Moscow

Russia

Phone: +7-499-678-2082

Fax: +7-499-678-2083

Web: www.rmtltd.ru

Email: info@rmtltd.ru

EUROPE/USA - TEC Microsystems GmbH

Schwarzschildstrasse 3, 12489 Berlin

Germany

Tel. +49 30 6789 3314

Fax+49 30 6789 3315

Web: www.tec-microsystems.com

Email: info@tec-microsystems.com

CHINA - ProTEC Ltd.

深圳市南山区登良路恒裕中心B座207

电话:+86-755-61596066

传真:+86-755-61596036

邮编:518054

Web: www.protecltd.com

Email: info@protecltd.com

Legal Notice

All logos, images, trademarks and product names (collectively Materials) are proprietary to RMT Ltd and/or any of its affiliates, or subsidiaries, or other respective owners that have granted RMT Ltd the permission and/or license to use such Materials. All images are provided by RMT Ltd. and are subjects of copyright protection.

RMT Ltd, TEC Microsystems GmbH and ProTEC Ltd do not grant a copyright license (express or implied) to the Recipient, except that Recipient may reproduce the logos, images and text materials in this press-release without any alteration for non-promotional or editorial purposes only with a written note about materials owner.

Copyright protection warning

Graphic materials and text from this datasheet may not be used commercially without a prior response in writing on company letterhead and signed by RMT Ltd authority. Thank you for respecting the intellectual property rights protected by the International Copyright laws.

Warning: All datasheet images contain RMT Ltd hidden watermark for the immediate proof of their origin.

RMT Image

Hidden Watermark