

Vishay High Power Products

Schottky Rectifier, 2 x 15 A

PRODUCT SUMMARY					
I _{F(AV)}	2 x 15 A				
V _R	35/45 V				
I _{RM}	100 mA at 125 °C				

FEATURES

- 150 °C T_J operation
- Low forward voltage drop
- High frequency operation
- Center tap D²PAK and TO-262 packages
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified for Q101 level

DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES I					
I _{F(AV)}	Rectangular waveform (per device)	Rectangular waveform (per device) 30					
I _{FRM}	$T_{C} = 123 \ ^{\circ}C \ (per leg)$	T _C = 123 °C (per leg) 30					
V _{RRM}		35/45	V				
I _{FSM}	t _p = 5 μs sine	1020	A				
V _F	20 Apk, T _J = 125 °C	0.6	V				
TJ	Range	- 65 to 150	°C				

VOLTAGE RATINGS						
PARAMETER	SYMBOL MBRB3035CT MBRB3045CT MBR3035CT-1 MBR3045CT-1			UNITS		
Maximum DC reverse voltage	V _R	35	45	V		
Maximum working peak reverse voltage	V _{RWM}	55	47	v		

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST	CONDITIONS	VALUES	UNITS		
Maximum average per leg				15			
forward current per device	I _{F(AV)}	$T_{\rm C} = 123$ C, lated $V_{\rm R}$	$T_C = 123 \ ^\circ C$, rated V_R				
Peak repetitive forward current per leg	I _{FRM}	Rated V _R , square wave, 20 I	Rated V_R , square wave, 20 kHz, $T_C = 123 \text{ °C}$				
Non-repetitive peak surge current		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	1020	A		
Non-repetitive peak surge current	IFSM	Surge applied at rated load conditions halfwave, single phase, 60 Hz		200			
Non-repetitive avalanche energy per leg	E _{AS}	$T_{J} = 25 \text{ °C}, I_{AS} = 2 \text{ A}, L = 5 \text{ mH}$		10	mJ		
Repetitive avalanche current per leg	I _{AR}	$\begin{tabular}{ c c c c } \hline Current decaying linearly to zero in 1 \mbox{μs$} \\ \hline Frequency limited by T_J maximum V_A = 1.5 x V_R typical $$2$ $$A$ \end{tabular}$		А			

Vishay High Power Products Schottky Rectifier, 2 x 15 A

ELECTRICAL SPECIFICATIONS						
SYMBOL	TEST (VALUES	UNITS			
	30 A	T _J = 25 °C	0.76	V		
V _{FM} ⁽¹⁾	20 A	T 105 %C	0.6			
	30 A		0.72			
1 (1)	T _J = 25 °C	Roted DC voltage	1	mA		
IRM ("	T _J = 125 °C	Haled DC vollage	100			
V _{F(TO)}		0.29	V			
r _t	ij = ij maximum	13.6	mΩ			
CT	$V_R = 5 V_{DC}$ (test signal	800	pF			
L _S	Measured from top of terminal to mounting plane		8.0	nH		
dV/dt	Rated V _R 10 0			V/µs		
	SYMBOL V _{FM} ⁽¹⁾ I _{RM} ⁽¹⁾ V _{F(TO)} r _t C _T L _S	SYMBOL TEST (C) $V_{FM}^{(1)}$ 30 A $20 A$ 30 A $30 A$ $10 A$ $I_{RM}^{(1)}$ $T_J = 25 \ ^{\circ}C$ $I_{RM}^{(1)}$ $T_J = 125 \ ^{\circ}C$ $V_{F(TO)}$ $T_J = T_J$ maximum r_t $V_R = 5 \ V_{DC}$ (test signal for the	$\begin{tabular}{ c c c c } \hline SYMBOL & TEST CONDITIONS \\ \hline & & & & & & & & & \\ \hline & & & & & & &$	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CONDITIONS & VALUES \\ \hline SYMBOL & T_J = 25 \ ^{\circ}C & 0.76 \\ \hline 20 \ A & T_J = 25 \ ^{\circ}C & 0.66 \\ \hline 20 \ A & T_J = 125 \ ^{\circ}C & 0.72 \\ \hline \hline 30 \ A & T_J = 125 \ ^{\circ}C & 0.72 \\ \hline \hline 1_J = 125 \ ^{\circ}C & 11 \\ \hline T_J = 125 \ ^{\circ}C & 100 \\ \hline \hline V_{F(TO)} & T_J = 7_J \ maximum & 0.29 \\ \hline r_t & & 0.29 \\ \hline r_t & & 13.6 \\ \hline C_T & V_R = 5 \ V_{DC} \ (test signal range 100 \ kHz to 1 \ MHz) \ 25 \ ^{\circ}C & 800 \\ \hline L_S & Measured from top of terminal to mounting plane & 8.0 \\ \hline \end{tabular}$		

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction tempera	ature range	TJ		- 65 to 150	°C	
Maximum storage tempera	ature range	T _{Stg}		- 65 to 175		
Maximum thermal resistance, junction to case per leg		R _{thJC}	DC operation	1.5		
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased (Only for TO-262)	0.50	°C/W	
Maximum thermal resistan junction to ambient	ice,	R _{thJA}	DC operation	50		
Approximate weight				2	g	
				0.07	oz.	
Mounting torque minimum maximum			Non-lubricated threads	6 (5)	kgf ⋅ cm	
				12 (10)	(lbf · in)	
Marking device			Case style D ² PAK	MBRB3	045CT	
			Case style TO-262	MBR304	45CT-1	

MBRB30..CT/MBR30..CT-1

Schottky Rectifier, 2 x 15 A Vishay High Power Products

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

MBRB30..CT/MBR30..CT-1

Vishay High Power Products Schottky Rectifier, 2 x 15 A

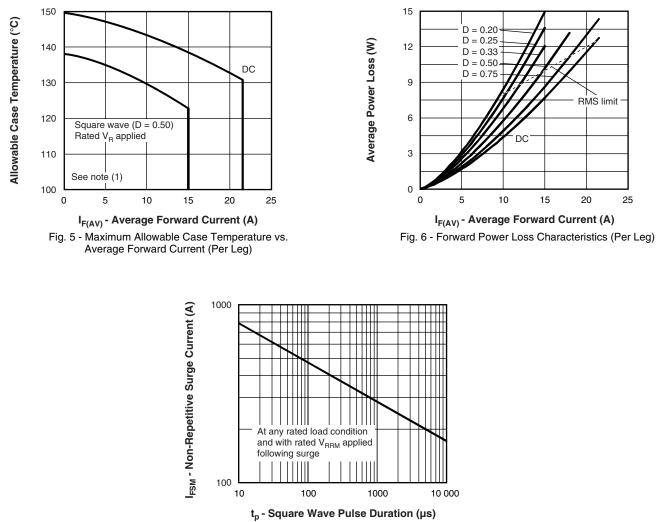


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Note

- (1) Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC};$ $Pd = Forward power loss = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6)};$ $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 D); I_R \text{ at } V_{R1} = Rated V_R$

SHA

Schottky Rectifier, 2 x 15 A Vishay High Power Products

ORDERING INFORMATION TABLE

Device code	MBR	В	30	45	СТ	-1	TRL	-	
		2	3	4	5	6	7	8	
	1 - 2 - 3 - 4 - 5 - 6 - 7 -	• B = • No Curr Volta CT = • No • -1 • No	ential pa = D^2PA^{μ} ne = TC rent ratir age ratir = Essen ne = D^2 = TO-26 ne = Tu L = Tap	([-262 [ng (30 = ngs — tial part PAK [s2 [be (50 p e and re	6 None 6 = -1 30 A) number 2 = B 2 None bieces) bel (left of	35 45 e			• ·
	8 -	• No • Pb	R = Tap ne = Sta F = Lea = Lead (andard p d (Pb)-fi	oroduction ree (for	on TO-262	and D ²	PAK tul	-

LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95014				
Part marking information	http://www.vishay.com/doc?95008			
Packaging information	http://www.vishay.com/doc?95032			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.