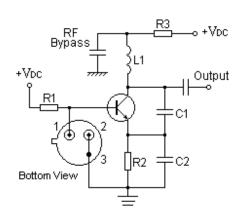
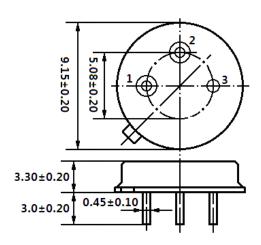

Features

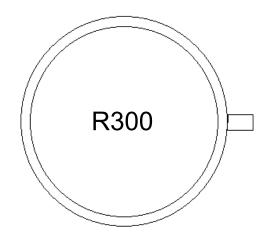
- 1-port Resonator
- Metal Case for TO-39
- RoHS compatible
- Package Code TO-39
- Electrostatic Sensitive Device(ESD)



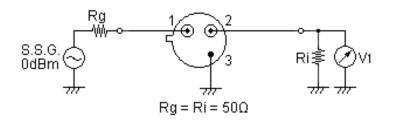
Application


Typical Low-Power Transmitter Application

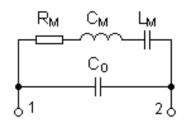
Typical Local Oscillator Application


Package Dimensions (TO-39)

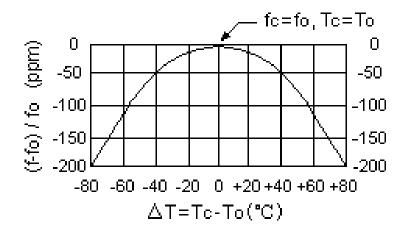
Pin Configuration


1	Input/ Output
2	Output/ Input
3	Ground

Marking



ь	Manufacturer&
N	SAW Resonator
300	Part number

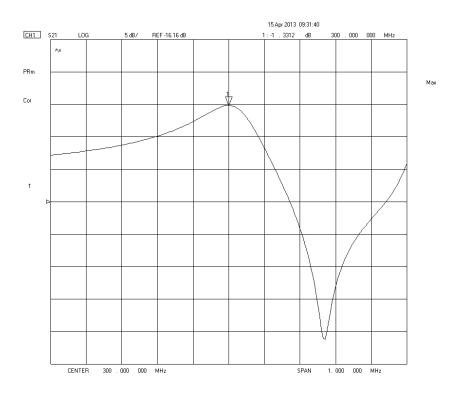

Test Circuit

Equivalent LC Model

Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

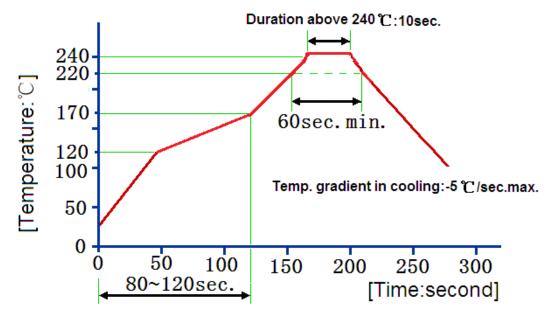
Performance


Maximum Rating

Item		Value	Unit
DC Voltage	V _{DC}	±30	V
Operation Temperature	Т	-40 ~ +85	${\mathbb C}$
Storage Temperature	T _{stg}	-55 ~ +125	${\mathbb C}$
RF Power Dissipation	Р	10	dBm

Electronic Characteristics

Item			Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	fc		300.000		MHz
Frequency	Tolerance from300.000MHz	△f _c		±75		KHz
Insertion Loss(min)		IL		1.4	1.8	dB
Quality Factor	Unloaded Q	Qu		17468		
Quality Factor	50Ω Loaded Q	Q _L		2360		
Temperature Stability	Turnover Temperature	T ₀	25	40	55	${\mathbb C}$
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging	Absolute Value during the First Year			≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		15	25	Ω
	Motional Inductance	L _M		142		μΗ
	Motional Capacitance	См		1.97		fF
	Static Capacitance	C ₀	2.1	2.4	2.7	pF


Frequency Response

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition
1	Temperature Storage	(1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -40℃±3℃, Duration: 250h, Recovery time: 2h±0.5h
2	Humidity Test	Conditions: 60 ℃±2℃, 90~95% RH Duration: 250h
3	Thermal Shock	Heat cycle conditions: TA=-40°C±3°C, TB=85°C±2°C, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.
4	Vibration Fatigue	Frequency of vibration: 10~55Hz Amplitude:1.5mm Directions: X,Y and Z Duration: 2h
5	Drop Test	Cycle time: 10 times Height: 1.0m
6	Solder Ability Test	Temperature: 245℃±5℃ Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5
7	Resistance to Soldering Heat	(1)Thickness of PCB:1mm , Solder condition: 260 ℃±5 ℃ , Duration: 10±1s (2)Temperature of Soldering Iron: 350 ℃±10 ℃ , Duration: 3~4s , Recovery time : 2 ± 0.5h

Recommended Reflow Soldering Diagram

Reflow cycles:3 cycles max.

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may be soldered. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.