

香港至恩科技有限公司 www.to-grace.com 公司授权代理销售LITE-ON:光耦,贴片LED灯等 进口原装,现货供应,价格优势,技术支持 电话:0755-83464948 传真:0755-83464076

AA2214VR41S-W2-AMT

2.2 x 1.4 mm Surface Mount LED Lamp

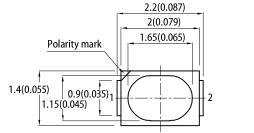
DESCRIPTIONS

- The source color devices are made with InGaN Light Emitting Diode
- · Electrostatic discharge and power surge could damage the LEDs
- · It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs
- · All devices, equipments and machineries must be electrically grounded

FEATURES

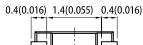
- 2.2 mm x 1.4 mm, 1.3 mm high
- Low power consumption
- · Available on tape and reel
- Package: 2000 pcs / reel
- Moisture sensitivity level: 3
- RoHS compliant

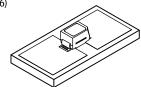
APPLICATIONS

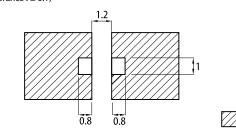

- Traffic signaling
- · Backlighting (illuminated advertising, general lighting)
- · Interior and exterior automotive lighting
- Substitution of micro incandescent lamps
- Reading lamps
- Signal and symbol luminaire for orientation
- Marker lights (e.g. Steps, exit ways, etc)
- Decorative and entertainment lighting
- Indoor and outdoor commercial and residential architectural lighting

ATTENTION

Observe precautions for handling electrostatic discharge sensitive devices


PACKAGE DIMENSIONS




1 0 1 2

RECOMMENDED SOLDERING PATTERN

(units : mm; tolerance : ± 0.1)

Notes

All dimensions are in millimeters (inches).

Tolerance is ±0.2(0.008") unless otherwise noted.
 The specifications, characteristics and technical data described in the datasheet are subject to

change without prior notice. The device has a single mounting surface. The device must be mounted according to the specifications.

SELECTION GUIDE

Part Number	Emitting Color (Material)	Lens Type	lv (mcd) @ 20mA ^[2]			Viewing Angle ^[1]
			Code.	Min.	Max.	201/2
AA2214VR41S-W2-AMT	Warm White (InGaN)	Yellow Fluorescent	U	1000	1300	
			V	1300	1600	
			W	1600	1900	120°
			Х	1900	2300	

Notes

- 1. 61/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
 2. Luminous intensity / luminous flux: +/-15%.
- 3. Luminous intensity value is traceable to CIE127-2007 standards.

ELECTRICAL / OPTICAL CHARACTERISTICS at T_A=25°C

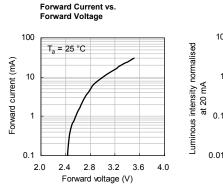
Parameter	Symbol	Emitting Color	Value			Unit
Parameter	Symbol Emitting Color		Min.	Тур.	Max.	Unit
Capacitance	С	Warm White	-	100	-	pF
Forward Voltage I _F = 20mA	V _F ^[1]	Warm White		3.3	4.0	V
Color Temperature	ССТ	Warm White	2870	3000	3220	к
Reverse Current ($V_R = 5V$)	I _R	Warm White	-	-	50	μA
Temperature Coefficient of x I_F = 20mA, -10°C $\leq T \leq$ 100°C	TC _x	Warm White	-	-0.15	-	10⁻³/°C
Temperature Coefficient of y I_F = 20mA, -10°C $\leq T \leq$ 100°C	TCy	Warm White	-	-0.16	-	10⁻³/°C
Temperature Coefficient of $~V_F$ I_F = 20mA, -10°C \leq T \leq 100°C	TCv	Warm White	-	-3.0	-	mV/°C

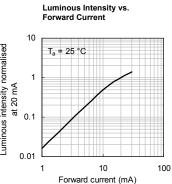
Notes:

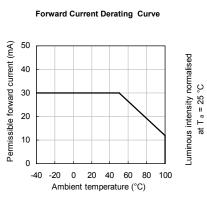
Forward voltage: ±0.1V.
 Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

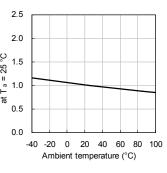
ABSOLUTE MAXIMUM RATINGS at T_A=25°C

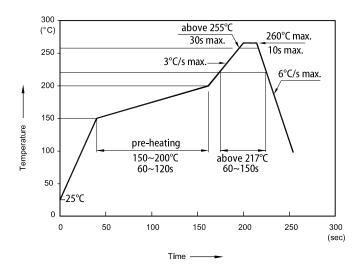
Parameter	Symbol	Value	Unit
Power Dissipation	P _D	120	mW
Reverse Voltage	V _R	5	V
Junction Temperature	Tj	115	°C
Operating Temperature	T _{op}	-40 to +100	°C
Storage Temperature	T _{stg}	-40 to +110	°C
DC Forward Current	I _F	30	mA
Peak Forward Current	I _{FM} ^[1]	100	mA
Electrostatic Discharge Threshold (HBM)	-	250	V
Thermal Resistance (Junction / Ambient)	R _{th JA} ^[2]	260	°C/W
Thermal Resistance (Junction / Solder point)	R _{th JS} ^[2]	185	°C/W


Notes: 1. /1/10 Duty Cycle, 0.1ms Pulse Width. 2. R_{in, Ja}, R_{in, JS} Results from mounting on PC board FR4 (pad size ≥ 16 mm² per pad). 3. Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.

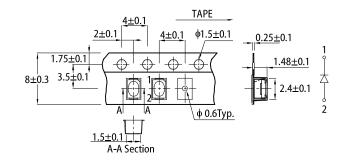

TECHNICAL DATA


SPATIAL DISTRIBUTION

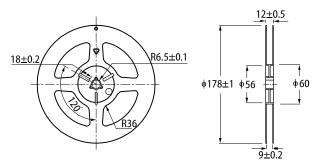

WARM WHITE



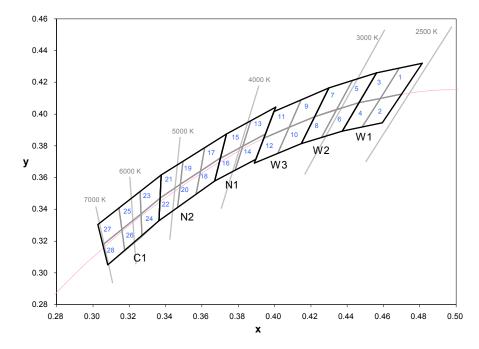
REFLOW SOLDERING PROFILE for LEAD-FREE SMD PROCESS



Notes.


 Don't cause stress to the LEDs while it is exposed to high temperature.
 The maximum number of reflow soldering passes is 2 times.
 Reflow soldering is recommended. Other soldering methods are not recommended as they might cause damage to the product.

Content of the second of


TAPE SPECIFICATIONS (units : mm)

REEL DIMENSION (units : mm)

CIE CHROMATICITY DIAGRAM

Group	Chromaticity Regions	CCT (K)				
Gloup	Chiomaticity Regions	Min.	Тур.	Max.		
W1	1, 2, 3, 4	2580	2700	2870		
W2	5, 6, 7, 8	2870	3000	3220		
W3	9, 10, 11, 12	3220	3500	3710		

Group	Chromaticity Regions	CCT (K)				
Group	Oniomaticity Regions	Min.	Тур.	Max.		
N1	13, 14, 15, 16	3710	4000	4260		
N2	17, 18, 19, 20, 21, 22	4260	4700	5310		
C1	23, 24, 25, 26, 27, 28	5310	6000	7040		

Notes:

Notes: Shipment may contain more than one chromaticity regions. Orders for single chromaticity region are generally not accepted. Measurement tolerance of the chromaticity coordinates is ± 0.01 .

	х	у		х	У		х	У		х	У
	0.4582	0.4099		0.4147	0.3814		0.3702	0.3722		0.3481	0.3557
1	0.4687	0.4289	0	0.4221	0.3984	15	0.3736	0.3874	22	0.3370	0.3472
	0.4813	0.4319	8	0.4342	0.4028	15	0.3869	0.3958		0.3364	0.3328
	0.4700	0.4126		0.4259	0.3853		0.3825	0.3798		0.3466	0.3411
	0.4483	0.3919		0.4080	0.3916	10	0.3670	0.3578	23	0.3376	0.3616
2	0.4582	0.4099	9	0.4146	0.4089		0.3702	0.3722		0.3260	0.3512
2	0.4700	0.4126	9	0.4299	0.4165	16	0.3825	0.3798		0.3265	0.3371
	0.4593	0.3944		0.4221	0.3984		0.3783	0.3646		0.3370	0.3472
	0.4465	0.4071		0.4017	0.3751	17	0.3736	0.3874	24	0.3370	0.3472
2	0.4562	0.4260	10	0.4080	0.3916		0.3616	0.3788		0.3265	0.3371
3	0.4687	0.4289	10	0.4221	0.3984		0.3592	0.3641		0.3270	0.3230
	0.4582	0.4099		0.4147	0.3814		0.3703	0.3726		0.3364	0.3328
4	0.4373	0.3893	11	0.3941	0.3848	18	0.3703	0.3726	25	0.3260	0.3512
	0.4465	0.4071		0.3996	0.4015		0.3592	0.3641		0.3144	0.3408
	0.4582	0.4099		0.4146	0.4089		0.3568	0.3495		0.3160	0.3274
	0.4483	0.3919		0.4080	0.3916		0.3670	0.3578		0.3265	0.3371
	0.4342	0.4028		0.3889	0.3690		0.3616	0.3788	26	0.3265	0.337
-	0.4430	0.4212	10	0.3941	0.3848	10	0.3496	0.3702		0.3160	0.3274
5	0.4562	0.4260	12	0.4080	0.3916	19	0.3481	0.3557		0.3175	0.3139
	0.4465	0.4071		0.4017	0.3751		0.3592	0.3641		0.3270	0.3230
	0.4259	0.3853		0.3825	0.3798		0.3592	0.3641		0.3144	0.3408
0	0.4342	0.4028	10	0.3869	0.3958		0.3481	0.3557	27	0.3028	0.3304
6	0.4465	0.4071	13	0.4006	0.4044	20	0.3466	0.3411		0.3055	0.3177
	0.4373	0.3893		0.3950	0.3875		0.3568	0.3495		0.3160	0.3274
	0.4221	0.3984		0.3783	0.3646		0.3496	0.3702		0.3160	0.3274
7	0.4299	0.4165	4.4	0.3825	0.3798	01	0.3376	0.3616	20	0.3055	0.3177
7	0.4430	0.4212	14	0.3950	0.3875	21	0.3370	0.3472	28	0.3081	0.3049
	0.4342	0.4028		0.3898	0.3716		0.3481	0.3557		0.3175	0.3139

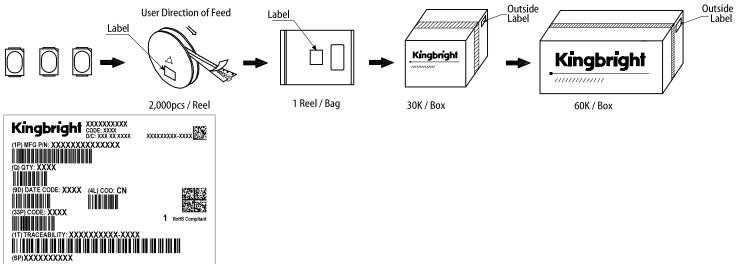
RELIABILITY TEST ITEMS AND CONDITIONS

The reliability of products shall be satisfied with items listed below

LOT TOLERANCE PERCENT DEFECTIVE (LTPD): 10%

No.	Test Item	Standards	Test Condition	Test Times / Cycles	Number of Damaged
1	Continuous operating test	-	T_a = 25°C, I _F = maximum rated current *	1,000 h	0 / 22
2	High Temp. operating test	EIAJ ED-4701/100(101)	T_a = 100°C, I _F = maximum rated current *	1,000 h	0 / 22
3	Low Temp. operating test	-	T_a = -40°C, I_F = maximum rated current *	1,000 h	0 / 22
4	High temp. storage test	EIAJ ED-4701/100(201)	T _a = maximum rated storage temperature	1,000 h	0 / 22
5	Low temp. storage test	EIAJ ED-4701/100(202)	T _a = -40°C	1,000 h	0 / 22
6	High temp. & humidity storage test	-	T _a = 60°C, RH = 90%	500 h	0 / 22
7	High temp. & humidity operating test	-	$T_a = 60^{\circ}$ C, RH = 90% I _F = maximum rated current *	500 h	0 / 22
8	Soldering reliability test	EIAJ ED-4701/100(301)	Moisture soak: 30°C, 70% RH, 72h Preheat: 150~180°C (120s max.) Soldering temp: 260°C(10s)	2 times	0 / 18
9	Thermal shock operating test	-	$T_a = -40$ °C(15min) ~ 100°C(15min) $I_F =$ derated current at 100°C	1,000 cycles	0 / 22
10	Thermal shock test	-	T _a = -40°C(15min) ~ maximum rated storage temperature(15min)	1,000 cycles	0 / 22
11	Electric Static Discharge (ESD)	EIAJ ED-4701/100(304)	C = 100pF, R2 = 1.5KΩ V = 250V	Once each Polarity	0 / 22
12	Vibration test	-	a = 196m/s ² , f = 100~2KHz, t = 48min for all xyz axes	4 times	0 / 22

*: Refer to forward current vs. derating curve diagram

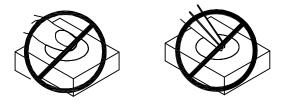

CRITERIA FOR JUDGING DAMAGE

Items	Symbols	Conditions	Failure Criteria
luminous Intensity	Iv	I _F = 20mA	Testing Min. Value < Spec. Min. Value x 0.5
Forward Voltage	V _F	I _F = 20mA	Testing Max. Value ≥ Spec. Max. Value x 1.2
Reverse Current	I _R	V _R = Maximum Rated Reverse Voltage	Testing Max. Value ≥ Spec. Max. Value x 2.5
High temp. storage test	-	-	Occurrence of notable decoloration, deformation and cracking

O 2019 Kingbright. All Rights Reserved. Spec No: DSAL4017 / 1201007398 Rev No: V.4B Date: 01/09/2019

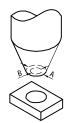
AA2214VR41S-W2-AMT

PACKING & LABEL SPECIFICATIONS


HANDLING PRECAUTIONS

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.


2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.

- 4-1. The inner diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks.
- 4-2. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 4-3. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure
- precise pickup and avoid damage during production. As silicone encapsulation is permeable to gases, some corrosive substances such as H₂S might corrode silver 5. plating of lead frame. Special care should be taken if an LED with silicone encapsulation is to be used near such substances.

3. Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

PRECAUTIONARY NOTES

- The information included in this document reflects representative usage scenarios and is intended for technical reference only.
- 2 The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- 3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If
- customer usage exceeds the specified limits. Kingbright will not be responsible for any subsequent issues. The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance. 4.

Download from alldatasheet.com

- The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright. All design applications should refer to Kingbright application notes available at https://www.KingbrightUSA.com/Applicatio 6 onNotes