Cyntec

Current Sensor Resistor

RL-1005-1 Series Current Sensor Resistor (Lead / Halogen Free)

Features / Applications :

- Power rating is up to 1/16W
- Low TCR current sensor
- Resistors are ideal for all types of current sensing
- Metal film construction; Excellent long-term stability
- Moisture sensitivity level: MSL 1
- RoHS compliant

Electrical Specifications :

Characteristics ¹	Fea	ture
Power Rating ²	1/16 W	
Resistance Value(mΩ)	20 to 69	70 to 1000
Temperature Coefficient of Resistance(ppm/°C)	0 to 500	± 100
Operation Temperature Range	-55℃ to +125℃	
Maximum Working Voltage (V)	(P*R) ^{1/2}	

Note :

1. For detailed information see table on page 3

2. For sensors operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.

Figure 1. : Power Temperature Derating Curve

Outline Drawing :

Type Designation :

Note :

- (1) Series No.
- (2) Size
- (3) Power Rating :1 = 1/16W
- (4) Resistance value : $0R5m = 0.5m\Omega$; $R002 = 2m\Omega$; $R010 = 10m\Omega$
- (5) Tolerance : ±1%(F), ±2%(G), ±5%(J)

Available standard resistance values :

	Tolerance		
Resistance Values	±1.0%	±2.0%	±5.0%
R020	✓	✓	✓
R025	✓	✓	✓
R040	✓	✓	✓
R050	✓	✓	✓
R060	✓	✓	✓
R068	✓	✓	✓
R075	\checkmark	✓	✓
R100	✓	✓	✓
R150	✓	✓	✓
R180	~	✓	✓
R200	✓	✓	✓
R220	✓	~	✓
R240	✓	~	✓
R250	✓	1	✓
R300	✓	~	✓
R333	√	~	✓
R400	\checkmark	✓	✓
R425	\checkmark	~	✓
R475	✓	~	✓
R500	\checkmark	✓	✓
R510	\checkmark	~	✓
R549	~	~	~
R600	~	~	~
R620	~	~	~
R680	✓	✓	✓
R820	~	~	~
1R00	✓	✓	✓

✓ = available

Further values and tolerances on request.

Reliability Performance :

Test Item	Condition of Test	Requirements
Short Time Overload	2.5 x Rated power for 5 seconds Refer to JIS C 5201-1 4.13	ΔR : ±0.5%
Thermal Cycling	-55 to 125℃ 100 cycles, 15 min at each extreme condition Refer to JIS C 5201-1 4.19	∆R : ± 1.0%
Low Temperature Storage	Kept at -55℃, 1000 hours Refer to JIS C 5201-1 4.23.4	ΔR : ± 1.0%
Resistance to Soldering Heat	Dipped into solder at $260 \pm 5^{\circ}$ for 10 ± 1 seconds Refer to JIS C 5201-1 4.18	∆R:±1.0%
Load Life	Rated voltage for 1.5hours followed by a pause 0.5hour at $70 \pm 3^{\circ}$ C Cycle repeated 1000 hours Refer to JIS C 5201-1 4.25	ΔR:±1.0%
Damp Heat with Load	$60 \pm 2^{\circ}C$ with relative humidity 90% to 95%. D.C. rated voltage for 1.5 hours ON and 30 minutes OFF. Cycle repeated 1,000 hours Refer to JIS C 5201-1 4.24	$\Delta R \div 1.0\%$
High Temperature Exposure	Kept at 125°C for 1000 hours Refer to JIS C 5201-1 4.23.2	ΔR : ± 1.0%
Solderability	Temperature of Solder : $245 \pm 5^{\circ}$ C Immersion Duration : 3 ± 0.5 second Refer to JIS C 5201-1 4.17	Uniform coating of solder cover minimum of 95% surface being immersed
Mechanical Shock	100 G's for 6milliseconds. 5 pulses Refer to JIS C 5201-1 4.21	ΔR : ±0.5%
Substrate Bending	Glass-Epoxy board thickness : 1.6mm Bending width : 2mm Between the fulcrums : 90mm Refer to JIS C 5201-1 4.33	∆R:±0.5%

Note : Measurement at 24±4 hours after test conclusion for all reliability tests-parts.

Recommend Solder Pad Dimensions :

Packaging :

Tape packaging dimensions :

% Pre-emptied holes : 150 holes (or 30cm) or more.

Code letter	а	b
Dimension	$\textbf{0.68} \pm \textbf{0.05}$	$\textbf{1.18} \pm \textbf{0.05}$

Unit : mm

Peel Strength of Top Cover Tape :

The peel speed shall be about 300mm/min.

The peel force of top cover tape shall between 0.1 to 0.7N

Number of Taping:

10,000 pieces / reel

Label Marking :

The following items shall be marked on the reel.

(1) Type designation

- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name
- (5) The country of origin

Recommend Soldering Conditions:

Meet JEDEC-020D

(1) Reflow Soldering Method :

Reflow Soldering	Tp:255 to 260 $^\circ\!\!C$ Max.30 seconds (Tp)
	217°C 60 to 150 seconds
Pre-Heat	150 to 200°C 60 to 120 seconds
Time 25 $^\circ \!$	8 minutes max

(2) Soldering Iron Method : $350\pm 5^{\circ}C$ max.3 seconds

Care Note :

Care note for storage

- (1) Current sensor shall be stored in a environment where temperature and humidity must be controlled (temperature 5 to 40°C, humidity 30 to 80% RH). However, the humidity should be maintained as low as possible.
- (2) Current sensor shall not be stored under direct sunlight.
- (3) Current sensor shall be stored in condition without moisture, dust, any material defect solderability, or hazardous gas (i.e. Chlorination hydrogen, sulfurous acid gas, and sulfuration hydrogen)
- (4) The sensor can be stored for at least one year under the condition mentioned above.

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.