

WCMA1008C1X

Features

- Voltage Range -4.5V-5.5V
- · Low active power

— Typical active current: 6 mA @ f = f_{max} (70 ns speed)

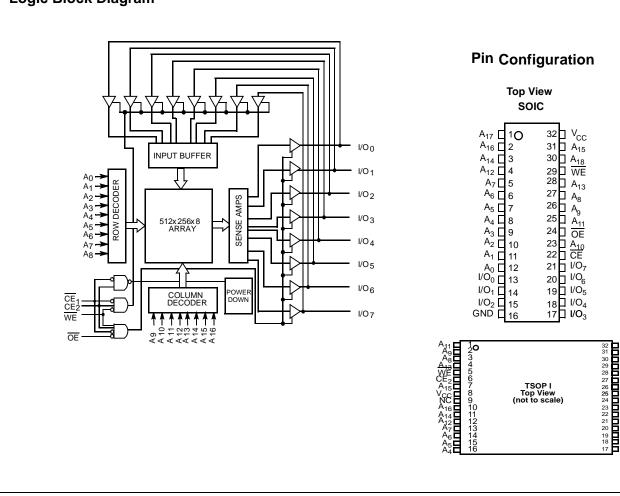
- · Low standby current
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE1, CE2, and OE features
- CMOS for optimum speed/power

Functional Description

The WCMA1008C1X is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE1), an active HIGH Chip Enable (CE₂), an active LOW Output Enable

Logic Block Diagram

128K x 8 Static RAM


(OE), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking Chip Enable 1 (CE1) and Write Enable (WE) inputs LOW and Chip Enable 2 (CE₂) input HIGH. Data on the eight I/O pins (I/O₀ through I/O_7) is then written into the location specified on the address pins (A_0 through A_{16}).

Reading from the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) and Chip Enable 2 (CE2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE₂ LOW), the outputs are disabled (OE HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW)

The WCMA1008C1X is available in a standard 32-pin 450-mil-wide body width SOIC and 32-pin TSOP type I.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V _{CC} to Relative GND –0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State $^{[1]}$ 0.5V to V_{CC} +0.5V
DC Input Voltage ^[1] 0.5V to V _{CC} +0.5V
Current into Outputs (LOW)20 mA
Static Discharge Voltage2001V (per MIL-STD-883, Method 3015)
Latch-Up Current>200 mA

Product Portfolio

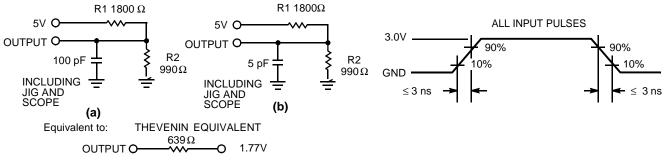
						Power Dissipation			
					Operating, Icc		Standb	y (I _{SB2})	
		V _{CC} Range	•			f = f _{max}			
Product	Min.	Typ. ^[2]	Max.	Speed	Temp.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
WCMA1008C1X	4.5 V	5.0V	5.5V	70 ns	Ind'l	6 mA	15 mA	4 μA	20 µA
WCIMA TOUGE TX	4.5 V	5.00	5.5V	55 ns		7.5 mA	20 mA	4 μΑ	20 µA

Operating Range

Range	Ambient Temperature	V _{cc}
Industrial	–40°C to +85°C	4.5V–5.5V

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.


Electrical Characteristics Over the Operating Range

Param-				WCN	IA1008C 1	X-55	WCN	IA1008C1	X-70	
eter	Description	Test Co	nditions	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Units
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _C	_{0H} = – 1 mA	2.4			2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_C$	_{0L} = 2.1 mA			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_C$ abled	_{CC} , Output Dis-	-1		+1	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	f=f _{MAX} =1/t _{RC}	I _{OUT} =0 mA V _{CC} = Max.,		7.5	20		6	15	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs		$1 \ge V_{IH}, CE_2 < V_{IH}$ $N \le V_{IL}, f = f_{MAX}$		0.1	2		0.1	1	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \text{Max. } V_{\text{CC}}, \ \overline{\text{CE}}\\ 0.3 \text{V}, \text{CE}_2 < \! 0.3 \\ V_{\text{IN}} \geq V_{\text{CC}} - 0\\ 0.3 \text{V}, \text{f} = \! 0 \end{array}$	3		2.5	15			15	μΑ

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF

AC Test Loads and Waveforms

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

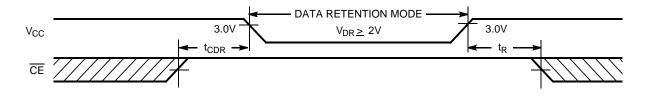
Switching Characteristics^[4] Over the Operating Range

		ę	55	7	70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE				•		-
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	\overline{CE}_1 LOW to Data Valid, CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		20		35	ns
t _{LZOE}	OE LOW to Low Z ^[5]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		20		25	ns
t _{LZCE}	\overline{CE}_1 LOW to Low Z, CE ₂ HIGH to Low Z ^[5]	5		5		ns
t _{HZCE}	\overline{CE}_1 HIGH to High Z, CE ₂ LOW to High Z ^[5, 6]		20		25	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	\overline{CE}_1 HIGH to Power-Down, CE ₂ LOW to Power-Down		55		70	ns
WRITE CYCLE ^[7]				•		-
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	\overline{CE}_1 LOW to Write End, CE_2 HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[5, 6]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[6]		20		25	ns

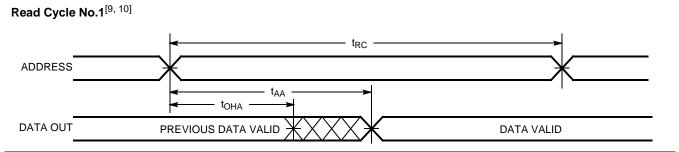
Notes:

4.

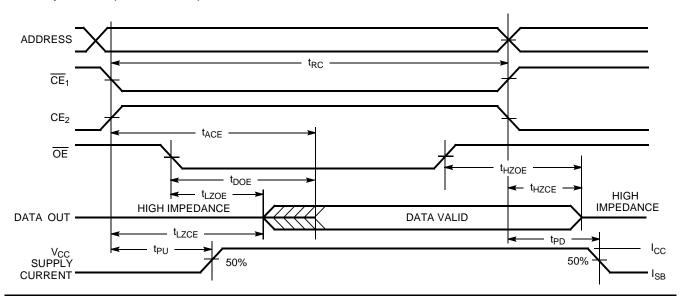
5. 6. 7.


Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of \overrightarrow{CE}_1 LOW and \overrightarrow{CE}_2 HIGH, and \overrightarrow{WE} LOW. \overrightarrow{CE}_1 and \overrightarrow{WE} must be LOW and \overrightarrow{CE}_2 HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. that terminates the write.

Data Retention Characteristics (Over the Operating Range)

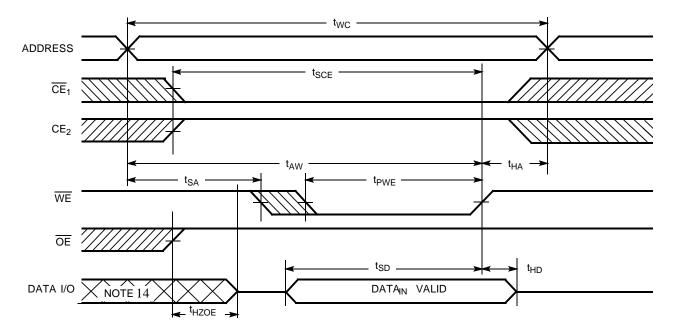

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR}	Data Retention Current	$\begin{array}{l} \frac{V_{CC}}{CE} = V_{DR} = 3.0V, \\ \overline{CE}_1 \geq V_{CC} - 0.3V, \\ \overline{CE}_2 < 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \text{ or}, \\ V_{IN} \leq 0.3V \end{array}$		1.5	20	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		70			ns

Data Retention Waveform

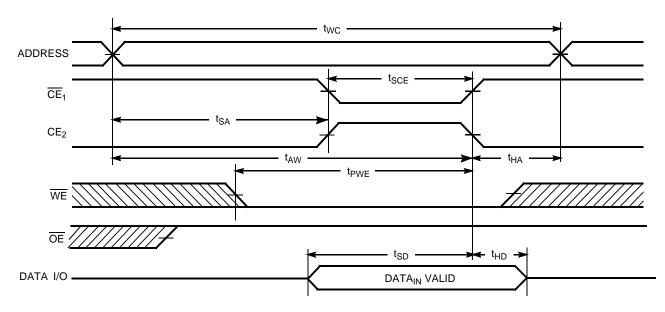


Switching Waveforms

Read Cycle No. 2 (OE Controlled)^[10, 11]


Notes:

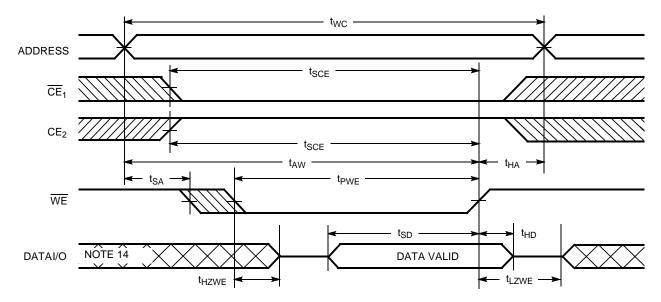
- 8. Full Device operatin requires line<u>ar</u> V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \ \mu s$ or stable at $V_{cc(min)} \ge 100 \ \mu s$. 9. <u>Device</u> is continuously selected. $\overline{OE}_1 = V_{IL}$, $\overline{CE}_2 = V_{IH}$ 10. WE is HIGH for read cycle. 11. Address valid prior to or coincident with $\overline{\overline{CE}_1}$ transition LOW and \overline{CE}_2 transition HIGH.



Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[7. 12, 13]

Write Cycle No. 2 (\overline{CE}_1 or CE_2 Controlled)^[7, 12, 13]

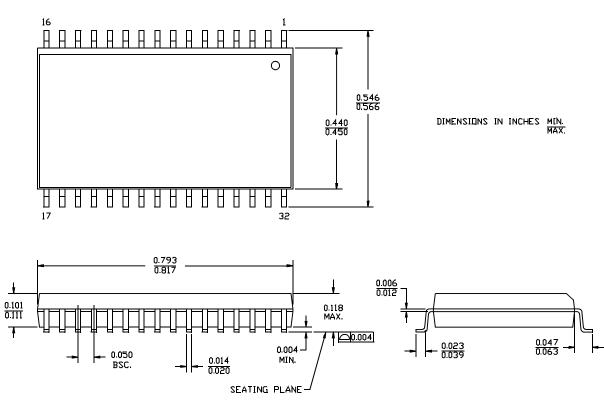

Notes:

- If CE₁ goes HIGH and CE₂ LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
 Data I/O is high-impedance if OE = V_{IH}.
 During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

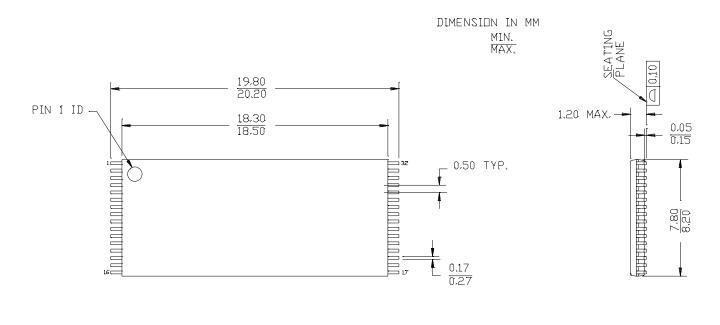
Write Cycle No.3 (WE Controlled, OE LOW)^[12]

Truth Table


CE ₁	CE2	OE	WE	1/0 ₀ – 1/0 ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA1008C1X-GF70	G32	32-Lead (450-Mil) Molded SOIC	
70	WCMA1008C1X-TF70	T32	32-Lead TSOP	Industrial
55	WCMA1008C1X-GF55	G32	32-Lead (450-Mil) Molded SOIC	muustnai
	WCMA1008C1X-TF55	T32	32-Lead TSOP	


Package Diagrams

32-Lead (450 MIL) Molded SOIC, G32

Package Diagrams (continued)

32-Lead Thin Small Outline Package T32

Document Title: WCMA1008C1X, 128K x 8 Static RAM							
REV.	Spec #	ECN #	Issue Date	Orig. of Change	Description of Change		
**	38-14022	115241	4/24/2002	MGN	New Datasheet		