MITSUBISHI
 MOULDED CASE CIRCUIT BREAKERS
 TECHNICAL NOTES

We have the pleasure of providing all our customers with the technical information for Mitsubishi moulded case circuit breakers. This indicates the fundamental data of our circuit breakers regarding the applicable standards, constructional principles, and operational performances. Please refer to the catalogue of our circuit breakers for details of specifications.
Also please stand in need of the handling and maintenance manual for maintaning the circuit breakers in service continuously.
We do hope they are available for all our customers to built more efficient systems.

CONTENTS

1. INTRODUCTION 2
2. FEATURES 3
2.1 Arc-Extinguishing Device - ISTAC 3
2.2 Digital ETR 4
3. CONSTRUCTION AND OPERATION 6
4. CHARACTERISTICS AND PERFORMANCE 11
4.1 Overcurrent-Trip Characteristics 11
4.2 Short-Circuit Trip Characteristics 11
4.3 Effects of Mounting Attitudes 12
4.4 DC Tripping Characteristics of AC-Rated MCCBs 12
4.5 Frequency Characteristics 12
4.6 Switching Characteristics 13
4.7 Dielectric Strength 13
5. CIRCUIT BREAKERS SELECTION 14
5.1 Circuit Breakers Selection Table 14
6. PROTECTIVE CO-ORDINATION 39
6.1 General 39
6.2 Interrupting Capacity Consideration 40
6.3 Selective-Interruption 41
6.4 Cascade Back-up Protection 68
6.5 I^{2} t Let-Through Characteristics and Current Limiting Characteristics 70
6.6 Protective Coordination with Wiring 71
6.7 Protective Coordination with Motor Starters 74
6.8 Coordination with Devices on the High-Voltage Circuit 76
7. SELECTION 79
7.1 For Motor Branch Circuits 79
7.2 For Lighting and Heating Branch Circuits 79
7.3 For Main Circuit 80
7.4 For Welding Circuits 80
7.5 For Transformer-Primary Use 82
7.6 For Capacitor Circuits 83
7.7 For Thyristor Circuits 84
7.8 MDU Breaker 90
7.9 Selection of MCCBs in inverter circuit 93
8. ENVIRONMENTAL CHARACTERISTICS 95
8.1 Atmospheric Environment 95
8.2 Vibration-Withstand Characteristics 96
8.3 Shock-Withstand Characteristics 97
9. SHORT-CIRCUIT CURRENT CALCULATIONS 98
9.1 Purpose 98
9.2 Definitions 98
9.3 Impedances and Equivalent Circuits of Circuit Components 98
9.4 Classification of Short-Circuit Current 101
9.5 Calculation Procedures 102

1. INTRODUCTION

Mitsubishi Advancing Technology

Mitsubishi, the leading manufacturer of circuit breakers, has been providing customers with a wide range of highly reliable and safe moulded case circuit breakers (MCCB) and earth-leakage circuit breakers (ELCB), corresponding to the needs of the age.

Since production began in 1933 many millions of Mitsubishi ACBs, MCCBs and MCBs have been sold throughout many countries.

In 1985 a new design concept for controlling arc energies within MCCBs - vapour jet control (VJC) - was introduced and significantly improved performance. It is provided the technological advance for a new 'super series' range of MCCBs and is used in all present ratings from 3 to 1600 amps .

In 1995 Mitsubishi offers the new PSS (Progressive Super Series) breakers having ratings from 3 to 250 amps that concentrate the most advanced technologies into a compact body. Their four major features are:

- New circuit-breaking technology ISTAC for a higher current-limiting performance, upgrading the circuitbreaking capability.
- Electronic circuit breakers with the Digital ETR protecting the circuit accurately.
- One-frame, one-size design allowing efficient panel design.
- Cassette-type internal accessories that allow installation by the user.

Progressive Super Series, an integration of technology and know-how from this comprehensive electronic product manufacturer, will create its own fields of application with its excellent performance.

A Brief Chronology

1933 Moulded case circuit breaker production begins.
1952 Miniature circuit breaker production begins.
1968 Manufacture commences of short-timedelayed breakers.
1969 Production and sale of first residual current circuit breakers.
170kA breaking level 'permanent power fuse' integrated MCCBs is introduced.
Introduction of first short-time delay and current-limiting selectable breakers go on sale.
1974 First MELNIC solid-state electronic trip unit MCCBs are introduced.
ELCBs with solid-state integrated circuit sensing devices are introduced.
1977-1979 Four new ranges of MCCBs are introduced - economy, standard, current limiting, ultra current limiting and motor rated designs - a comprehensive coverage of most application requirements.
Compact ACBs with solid-state trip devices and internally mounted accessories introduced.
1985-1989 Super series MCCBs with VJC and ETR are developed and launched - awarded the prestigious Japanese MInister of Construction Prize.
New 200kA level U-series MCCBs super current limiting breakers are introduced. Super-NV ELCBs and Super-AE ACBs are introduced.
1995 Progressive Super Series 30~250 amps are introduced.
1997 Progressive Super Series 400~800 amps are introduced.

2. FEATURES - Advanced MCCB Design Technology \& Performance

2.1 Arc-Extinguishing Device - ISTAC

Mitsubishi has developed an epoch-making ISTAC technology to realize an improved current-limiting and breaking performance within a smaller breaking space. Introduction of ISTAC technology upgrades the cur-rent-limiting, selective-breaking, and cascade-breaking performance. The maximum peak let-through current I_{p} decreases to about 80% (compared with Mitsubishi's 100AF). The passing energy $I_{2} t$ decreases to about 65\% (compared with MItsubishi's 100AF). The smaller breaking space has led to an improved function, a smaller size, and a standardization of the breakers.

Triple forces accelerating

The triple forces generated by a newly designed current pass and the Vapor Jet Control (VJC) insulating materials which makes up a slot-type breaking construction accelerate the movable conductor, and separate the contacts faster than ever before in shortbreaking.

Electromagnetic attractive force which works between a current of the movable conductor and a current of the fixed upper conductor.

Electromagnetic repulsive force which works between a current of the movable conductor and a current of the fixed lower conductor.

Pressure which works on the movable conductor by gas generated in the slot.

Arc control by slot-breaking

The VJC of the fixed contact incorporates newly developed insulation made of ceramic fiber and metal hydroxide. The substantially improves the VJC effect. The arc-extinguishing gas energies to improve the capability of extinguishing the arc.

The VJC suppresses the emergence of carbide products in breaking a current and contribute to the recovery of insulation immediately thereafter.
The VJCs on the fixed and movable contacts work together to forcefully reduce the arc spot and rapidly contract the total arc being extinguished.

Vapor jet control (VJC)
Vapor Jet Controllers made of insulating material are arranged around the contacts where they control the arc as follows:

1. The arc spot is forcibly reduced by the arrangement of the insulating material.
2. The arc column is contracted.
3. Adiabatic expansion cools the arc.
4. The arc is transferred at the optimum moment to the arc-extinguishing chamber by the arrangement of the Vapor Jet Controllers.

2.2 Digital ETR (Electronic Trip Relay)

Mitsubishi's electronic MCCBs are equipped with a digital ETR to enable fine protection.
The digital ETR contains Mitsubishi's original double IC (8 bit microcomputer and custom-IC).

Digital detection of the effective value

Electronic devices such as an inverter distort the current waveform. Mitsubishi's PSS electronic breakers are designed to detect digitally the effective value of the current to minimize over-current tripping errors. This enables fine protection for the system.

Standard equipped pre-alarm system

Mitsubishi's PSS electronic breakers have a pre-alarm system as a standard. When the load current exceeds the set pre-alarm current, the breaker lights up an LED and outputs a pre-alarm signal.

Processing of the digital ETR

2.3 Equipment of High Technology

Series	Type	Advanced Technology			
		ISTAC	VJC	Digital-ETR	Analog-ETR
NF-S	NF30-SP				
	NF50-HP				
	NF50-HRP	\bullet	\bullet		
	NF60-HP				
	NF100-SP	\bullet	\bullet		
	NF100-HP	\bullet	\bullet		
	NF100-SEP	-	\bullet	-	
	NF100-HEP	\bullet	\bullet	\bullet	
	NF160-SP		\bullet		
	NF160-HP	-	\bullet		
	NF250-SP		\bullet		
	NF250-HP	\bullet	\bullet		
	NF250-SEP	\bullet	\bullet	\bullet	
	NF250-HEP	\bullet	\bullet	\bullet	
	NF400-SP		\bullet		
	NF400-SEP		\bullet	\bullet	
	NF400-HEP		\bullet	\bullet	
	NF400-REP		\bullet	-	
	NF630-SP		\bullet		
	NF630-SEP		\bullet	-	
	NF630-HEP		\bullet	\bullet	
	NF630-REP		\bullet	\bullet	
	NF800-SEP		\bullet	-	
	NF800-HEP		\bullet	-	
	NF800-REP		\bullet	\bullet	
	NF1000-SS				\bullet
	NF1250-SS				-
	NF1600-SS				\bullet
NF-C	NF50-CP				
	NF60-CP				
	NF100-CP				
	NF250-CP				
	NF400-CP				
	NF630-CP				
	NF800-CEP		\bullet	\bullet	
NF-U	NF100-RP	\bullet	\bullet		
	NF100-UP	\bullet	\bullet		
	NF225-RP		\bullet		
	NF225-UP	\bullet	\bullet		
	NF400-UEP		\bullet	-	
	NF630-UEP		\bullet	\bullet	
	NF800-UEP		\bullet	\bullet	
	NF1250-UR				\bullet

3. CONSTRUCTION AND OPERATION

3.1 General

The primary components are: a switching mechanism, an automatic tripping device (and manual trip button), contacts, an arc-extinguishing device, terminals and a molded case.

Fig. 3.1 Type NF100-SP Construction

3.2 Switching Mechanism

The ON, OFF and TRIPPED conditions are shown in Fig. 3.2. In passing from ON to OFF, the handle tension spring passes through alignment with the toggle link ("dead point" condition). In so doing, a positive, rapid contact-opening action is produced; the OFF to ON contact closing acts in a similar way ("quick make" and "quick break" actions). In both cases the action of the contacts is always rapid and positive, and independent of the human element -i.e., the force or speed of the handle.

In auto tripping a rotation of the bracket releases the cradle and operates the toggle link to produce the contact-opening action described above. In the tripped condition the handle assumes the center position between on and off, providing a visual indication of the tripped condition. Also, auto trip is "trip free," so that the handle cannot be used to hold the breaker in the ON condition. The protective contact-opening function cannot be defeated.

In multipole breakers the poles are separated by integral barriers in the molded case. The moving contacts of the poles are attached to the central toggle link by a common-trip bar, however, so that tripping, opening and closing of all poles is always simultaneous. This is the "common trip" feature, by which single phasing and similar unbalance malfunctions are effectively prevented.

b) Off

c) Tripped

Fig. 3.2 Switching Mechanism Action

3.3 Automatic Tripping Device

There are three types of device, the thermal-magnetic type, the hydraulic-magnetic type and the electronic trip relay type.

Automatic Tripping Devices

-Thermal-Magnetic Type (100~800A Frame)

-Thermal-Magnetic Type (1000~4000A Frame)

Fig. 3.3

Fig. 3.4

OHydraulic-Magnetic Type (30~60A Frame)

Fig. 3.5
OPrinciple of Electronic Trip Relay (ETR) Operation
(100~800A Frame)

(1000~1600A Frame)

1. Time-Delay Operation

An overcurrent heats and warps the bimetal to actuate the trip bar.
2. Instantaneous Operation

If the overcurrent is excessive, the amature is attracted and the trip bar actuated.

1. Time-Delay Operation

An overcurrent heats and warps the bimetal to actuate the trip bar.
2. Instantaneous Operation

If the overcurrent is excessive, magnetization of the stationary core is strong enough to attract the armature and actuate the trip bar.

1. Time-Delay Operation

At an overcurrent flow, the magnetic force of the coil overcomes the spring, the core closes to the pole piece, attracts the armature, and actuates the trip bar. The delay is obtained by the viscosity of silicon oil.
2. Instantaneous Operation

If the overcurrent is excessive, the armature is instantly attracted, without the influence of the moving core.

1. The current flowing in each phase is monitored by a current transformer (CT).
2. Each phase of the transformed current undergoes full-phase rectification in the rectifier circuit.
3. After rectification, each of the currents are converted by a peak-conversion and an effective-value conversion circuit.
4. The largest phase is selected from the converted currents.
5. Each time-delay circuit generates a time delay corresponding to the largest phase.
6. The trigger circuit outputs a trigger signal.
7. The trip coil is excited, operating the switching mechanism.

Fig. 3.6

Table 3.1 Comparison of Thermal-Magnetic, Hydraulic-Magnetic and Electronic Types

Item	Thermal-magnetic type	Hydraulic-magnetic type	Electronic type
Ambient temperature	Operating current is affected by ambient temperature (bimetal responds to absolute temperature not temperature rise).	Affected only to the extent that the damp-ing-oil viscosity is affected.	Negligible effect
Frequency	Negligible effect up to several hundred Hz ; above that the instantaneous trip is affected due to increased iron losses.	Trip current increases with frequency, due to increased iron losses.	Tripping current of some types decrease due to CT or condition of operating circuit with high frequency, and others increase.
Distorted wave	Negligible effect up to 600A; Above that operating current decreases due to increase of a fever.	IF distortion is big, minimum operating current increases.	For peak value detection, operating current drops.
Mounting attitude	Negligible effect.	Mounting attitude changes the effective weight of the magnetic core.	Negligible effect
Flexibility of operating characteristics	Bimetal must provide adequate deflection force and desired temperature characteristic. Operating time range is limited.	Oil viscosity, cylinder, core and spring design, etc., allow a wide choice of operating times.	Operating time can be easily shortened. To lengthen operating time is not.
Flexibility of rated current	Units for small rated currents are physically impractical.	Coil winding can easily be designed to suit any ampere rating.	Within the range of 50 (60)~100\% of rated current, any ampere rating are practical. Also, to lower the value of short-time delay or instantaneous trip can be easily done comparatively.

3.4 Contacts

A pair of contacts comprises a moving contact and a fixed contact. The instants of opening and closing impose the most severe duty. Contact materials must be selected with consideration to three major criteria:

1. Minimum contact resistance
2. Maximum resistance to wear
3. Maximum resistance to welding

Silver or silver-alloy contacts are low in resistance, but wear rather easily. Tungsten, or majority-tungsten alloys are strong against wear due to arcing, but rather high in contact resistance. Where feasible, 60\%+ silver alloy (with tungsten carbide) is used for contacts primarily intended for current carrying, and 60\%+ tungsten alloy (with silver) is used for contacts primarily intended for arc interruption. Large-capacity MCCBs employ this arrangement, having multicontact pairs, with the current-carrying and arc-interruption duties separated.

3.5 Arc-Extinguishing Device

Arcing, an inevitable aspect of current interruption, must be extinguished rapidly and effectively, in normal switching as well as protective tripping, to minimize deterioration of contacts and adjacent insulating materials. In Mitsubishi MCCBs a simple, reliable, and highly effective "de-ion arc extinguisher," consisting of shaped magnetic plates (grids) spaced apart in an insulating supporting frame, is used (Fig. 3.7). The arc (ionized-path current) induces a flux in the grids that attracts the arc, which tends to "lie down" on the grids, breaking up into a series of smaller arcs, and also being cooled by the grid heat conduction. The arc (being effectively longer) thus requires far more voltage to sustain it, and (being cooler) tends to lose ionization and extinguish. If these two effects do not extinguish the arc, as in a very large fault, the elevated temperature of the insulating frame will cause gas-sing-out of the frame material, to de-ionize the arc. Ac arcs are generally faster extinguishing due to the zero-voltage point at each half cycle.

3.6 Molded Case

The integral molded cases used in Mitsubishi MCCBs are constructed of the polyester resin containing glass fibers, the phenolic resin or glass reinforced nylon. They are designed to be suitably arc-, heat- and gasresistant, and to provide the necessary insulating spacings and barriers, as well as the physical strength required for the purpose.

3.7 Terminals

These are constructed to assure electrical efficiency and reliability, with minimized possibility of localized heating. A wide variety of types are available for ease of mounting and connection. Compression-bonded types and bar types are most commonly used.

3.8 Trip Button

This is a pushbutton for external, mechanical tripping of the MCCB locally, without operating the externalaccessory shunt trip or undervoltage trip, etc. It enables easy checking of breaker resetting, control-circuit devices associated with alarm contacts, etc., and resetting by external handle.

Fig. 3.7 The De-Ion Arc Extinguisher

Fig. 3.8 The Induced-Flux Effect

4. CHARACTERISTICS AND PERFORMANCE

4.1 Overcurrent-Trip Characteristics (Delay Tripping)

Tripping times for overcurrents of 130 and 200% of rated current are given in Table 4.1, assuming ambient temperatures of $40^{\circ} \mathrm{C}$, a typical condition inside of panelboards. The figures reflect all poles tested together for 130% tripping, and 105% non-tripping. Within the range of the long-delay-element (thermal or hydraulic) operation, tripping times are substantially linear, in inverse relationship to overcurrent magnitude.

The tripping times are established to prevent excessive conductor-temperature rise; although times may vary among MCCBs of different makers, the lower limit is restricted by the demands of typical loads: tung-sten-lamp inrush, starting motor, mercury-arc lamps, etc. The tripping characteristics of Mitsubishi MCCBs are established to best ensure protection against abnormal currents, while avoiding nuisance tripping.

4.1.1 Ambient Temperature and Thermal Tripping

Fig. 4.1 is a typical ambient compensation curve (curves differ according to types and ratings), showing that an MCCB rated for $40^{\circ} \mathrm{C}$ ambient use must be derated to 90% if used in a $50^{\circ} \mathrm{C}$ environment. In an overcurrent condition, for the specified tripping time, tripping would occur at 180% rated current, not 200%. At $25^{\circ} \mathrm{C}$, for the same tripping time, tripping would occur at 216%, not 200%.

4.1.2 Hot-State Tripping

The tripping characteristics described above reflect "cold-state tripping" - i.e., overloads increased from zero - and the MCCB stabilized at rated ambient. This is a practical parameter for most uses, but in intermittent operations, such as resistance welding, motor pulsing, etc., the "hot state" tripping characteristic must be specified, since over-loads are most likely to occur with the MCCB in a heated state, while a certain load current is already flowing.

Where the MCCB is assumed to be at 50% of rating when the overload occurs, the parameter is called the 50% hot-state characteristic; if no percentage is specified, 100% is assumed. Hot-state ratings of 50% and 75% are common.

4.2 Short-Circuit Trip Characteristics (Instantaneous Tripping)

For Mitsubishi MCCBs with thermal-magnetic trip units the instantaneous-trip current can be specified independently of the delay characteristic, and in many cases this parameter is adjustable offering considerable advantage in coordination with other protection and control devices. For example, in coordination with motor starters, it is important to set the MCCB instan-taneous-trip element at a lower value than the fusing (destruction) current of the thermal overload relay
(OLR) of the starter.
For selective tripping, it must be remembered that even though the branch-MCCB tripping time may be shorter than the total tripping time of the main MCCB, in a fault condition the latter may also be tripped because its latching curve overlaps the tripping curve of the former. The necessary data for establishing the required compatibility is provided in the Mitsubishi MCCB sales catalogues.

The total clearing time for the "instantaneous" tripping feature is shown in Fig. 4.3; actual values differ for each MCCB type.

Table 4.1 Overcurrent Tripping Times

Rated current (A)	Tripping time (minutes, max.)		Non-Tripping time (minutes, max.)
	200%	130%	105%
30 or less	8.5	60	60
$31 \sim 63$	4	60	60
$64 \sim 100$	8.5	120	120
$101 \sim 250$	8	120	120
$251 \sim 400$	10	120	120
$401 \sim 630$	12	120	120
$631 \sim 800$	14	120	120
$801 \sim 1000$	16	120	120
$1001 \sim 1250$	18	120	120
$1251 \sim 1600$	20	120	120
$1601 \sim 2000$	22	120	120
$2001 \sim 4000$	24	120	120

Fig. 4.1 Typical Temperature-Compensation Curve

Fig. 4.2 Hot-State-Tripping Curve

Fig. 4.3 Instantaneous Tripping Sequence

Fig. 4.4 Effect of Mounting Attitude on the HydraulicMagnetic MCCB Tripping Curves

4.3 Effects of Mounting Attitudes

Instantaneous tripping is negligibly affected by mounting attitude, for all types of MCCB. Delay tripping is also negligibly affected in the thermal types, but in the hydraulic-magnetic types the core-weight effect becomes a factor. Fig. 4.4 shows the effect, for verti-cal-surface mounting and for two styles of horizontalsurface mounting.

Fig. 4.5 Effects of Nonvertical-Plane Mounting on Current Rating

4.4 DC Tripping Characteristics of AC-Rated MCCBs

Table 4.2 DC Tripping Characteristics

Trip unit	Long delay	Instantaneous	Tripping curve
Thermal magnetic	No effect below 630A frame. Above this, AC types cannot be used for DC.	DC inst.-trip current is approx. 130% of AC value.	
Hydraulic magnetic	DC minimum-trip values are 110~140\% of $A C$ values.		

4.5 Frequency Characteristics

At commercial frequencies the characteristics of Mitsubishi MCCBs of below 630A frame size are virtually constant at both 50 Hz and 60 Hz (except for the E Line models, the characteristics of MCCBs of 800A frame and above vary due to the CT used with the delay element).

At high frequencies (e.g., 400 Hz), both the current capacity and delay tripping curves will be reduced by skin effect and increased iron losses.

Performance reduction will differ for different types; at 400 Hz it will become 80% of the rating in breakers of maximum rated current for the frame size, and 90%
of the rating in breakers of half of the maximum rating for the frame size.

The instantaneous trip current will gradually increase with frequency, due to reverse excitation by eddy currents. The rise rate is not consistent, but around 400 Hz it becomes about twice the value at 60 Hz . Mitsubishi makes available MCCBs especially designed for 400 Hz use. Apart from operating characteristics they are identical to standard MCCBs (S Line).

4.6 Switching Characteristics

The MCCB, specifically designed for protective interruption rather than switching, and requiring high-contact pressure and efficient arc-extinguishing capability, is expected to demonstrate inferior capability to that of a magnetic switch in terms of the number of operations per minute and operation life span. The specifications given in Table 4.3 are applicable where the MCCB is used as a switch for making and break-
ing rated current.
Electrical tripping endurance in MCCBs with shunt or undervoltage tripping devices is specified as 10% of the mechanical-endurance number of operations quoted in IEC standards.

Shunt tripping or undervoltage tripping devices are intended as an emergency trip provision and should not be used for normal circuit-interruption purposes.

Table 4.3 MCCB Switching Endurance

Frame size	Operations per hour	Number of operations		
		Without current	With current	Total
100 or less	120	8500	1500	10000
225	120	7000	1000	8000
400,630	60	4000	1000	5000
800	20	2500	500	3000
$1000 \sim 2000$	20	2500	500	3000
2500,3000	10	1500	500	2000
3200,4000	10	1500	500	2000

4.7 Dielectric Strength

In addition to the requirements of the various international standards, Mitsubishi MCCBs also have the impulse-voltage withstand capabilities given below (Table 4.4). The impulse voltage is defined as sub-
stantially square-wave, with a crest length of $0.5 \sim 1.5 \mu \mathrm{sec}$ and a tail-length of $32 \sim 48 \mu \mathrm{sec}$. The voltage is applied between line and load terminals (MCCB off), and between live parts and ground (MCCB on).

Table 4.4 MCCB Impulse Withstand Voltage (Uimp)

Line		Type	Impulse-voltage (kA)
MB		MB30-CS	4
		MB30-SP MB50-CP MB-50-SP MB100-SP MB225-SP	6
NF	S	NF30-SP NF50-HP NF60-HP NF50-HRP NF100-SP NF100-HP NF100-SEP NF100-HEP NF160-SP NF160-HP NF250-SP NF250-HP NF250-SEP NF250-HEP	6
		NF400-SP NF400-SEP NF400-HEP NF400-REP NF630-SP NF630-SEP NF630-HEP NF630-REP NF800-SEP NF800-HEP NF800-REP NF800-REP NF1000-SS NF1250-SS NF1600-SS	8
	C	NF30-CS	4
		NF50-CP NF60-CP NF100-CP NF250-CP	6
		NF400-CP NF630-CP NF800-CEP	8
	U	NF100-RP NF100-UP NF225-RP NF225-UP	6
		NF400-UEP NF630-UEP NF800-UEP	8

5. CIRCUIT BREAKER SELECTION

5.1 Circuit Breaker Selection Table

Following Table shows various characteristics of each breaker to consider selection and coordination with upstream devices or loads.

Characteristics

Standard: Standard characteristics MCCBs

Low-inst : Low-inst. MCCBs for Discrimination
When a power fuse (PF) is used as a high-voltage protector, it must be coordinated with an MCCBs on the secondary side.

Generator: Generator-Protection MCCBs
These MCCBs have long-time-delay operation shorter than standard type and low instantaneous operation.

Mag-Only : Magnetic trip only MCCBs
These are standard MCCBs minus the thermal tripping device. They have no timedelay tripping characteristic, providing protection only against large-magnitude shortcircuit faults.

CIRCUIT BREAKER SELECTION TABLE

To be agreed soon.

[^0]

[^1]| Frame (A) | | | 250 | |
| :---: | :---: | :---: | :---: | :---: |
| Type | | | NF250-SEP | NF250-HEP |
| Rated current In (A) | | | 125-250 | 125-250 |
| Rated insulation voltage Ui (V) AC | | | 690 | 690 |
| AC Breaking capacity (kA rms) IEC60947-2 Icu/lcs | | 690 V | - | 5/3 |
| | | 500 V | 15/8 | 30/8 |
| | | 440 V | 25/13 | 50/13 |
| | | 400 V | 30/15 | 50/13 |
| | | 230 V | 50/25 | 100/25 |
| Number of poles | | | $3 \quad 4$ | $3 \quad 4$ |
| Automatic tripping device | | | Electronic trip relay Adjustable ampere rating Adjustable long time delay operating time, short time delay pick up, and instantaneous | Electronic trip relay Adjustable ampere rating Adjustable long time delay operating time, short time delay pick up, and instantaneous |
| Rating (A) and Inst. (A) | | | Short time delay pick up current Variation is within $\pm 15 \%$ of setting current 2 to 10 Ir
 125 250-312.5-375-437.5-500-625-750-875-1000-1250
 150 300-375-450-525-600-
 750-900-1050-1200-1500
 175 350-437.5-525-612.5-700-
 875-1050-1225-1400-1750
 200 400-500-600-700-800-1000-
 1200-1400-1600-2000
 225 450-562.5-675-787.5-900-
 1125-1350-1575-1800-2250
 250 500-625-750-875-1000-
 1250-1500-1750-2000-2500
 Instantaneous pick up current
 Variation is within $\pm 15 \%$ of
 setting current $125 \sim 250 \sim 14 \text { In }$ | Short time delay pick up current Variation is within $\pm 15 \%$ of setting current
 2 to 10 Ir
 125 250-312.5-375-437.5-500-
 625-750-875-1000-1250
 150 300-375-450-525-600-
 750-900-1050-1200-1500
 175 350-437.5-525-612.5-700-
 875-1050-1225-1400-1750
 200 400-500-600-700-800-1000-
 1200-1400-1600-2000
 225 450-562.5-675-787.5-900
 1125-1350-1575-1800-2250
 250 500-625-750-875-1000-
 1250-1500-1750-2000-2500
 Instantaneous pick up current
 Variation is within $\pm 15 \%$ of
 setting current $125 \sim 250 \quad \begin{aligned} & 4 \sim 14 \ln \\ & 1000 \sim 3500 \end{aligned}$ |
| Number of poles | | | - | - |
| Low-inst | Automatic tripping device | | - | - |
| | Rating (A) and Inst. (A) | | - | - |
| Generator | Number of poles | | 3 | 3 |
| | | tripping | Electronic trip relay Adjustable ampere rating Adjustable long time delay operating time, short time delay pick up, and instantaneous | Electronic trip relay Adjustable ampere rating Adjustable long time delay operating time, short time delay pick up, and instantaneous |
| | | | Rating: 125 ~ 250A
 Inst. : Operating characteristics must be adjusted as follows.
 STD ≤ 3 (Is setting) LTD : minimum setting ($\mathrm{TL}=12 \mathrm{sec}$ setting) | Rating: 125 ~ 250A
 Inst. : Operating characteristics must be adjusted as follows.
 STD ≤ 3 (Is setting) LTD : minimum setting ($\mathrm{TL}=12 \mathrm{sec}$ setting) |
| Mag-Only | Number of poles | | - | - |
| | Auto | tripping | - | - |
| | Rating (A) and Inst. (A) | | - | - |

Frame (A)	800A	
Type	NF800-REP	NF800-UEP
Rated current In (A)	$\begin{gathered} 400 \sim 800 \\ \text { adjustable } \end{gathered}$	$\begin{gathered} 400 \sim 800 \\ \text { adjustable } \end{gathered}$
Rated insulation voltage Ui (V) AC	690	690
AC Breaking capacity (kA rms) IEC60947-2 Icu/lcs	20/15	35/35
	70/35	170/170
	125/63	200/200
	125/63	200/200
	150/75	200/200
Number of poles	3	$3 \quad 4$
Standard	Electronic trip relay Adjustable ampere rating Adjustable long time delay operating time, short time delay pick up and instantaneous	Electronic trip relay Adjustable ampere rating Adjustable long time delay operating time, short time delay pick up and instantaneous
Rating (A) and Inst. (A)		Short time delay pick up current Variation is within $\pm 15 \%$ of setting current 2 to 10 Ir 400 800-1000-1200-1400- 1600-2000-2400-2800- 3200-4000 450 900-1150-1350-1575- 1800-2250-2700-3150- 3600-4500 500 1000-1250-1500-1750- 2000-2500-3000-3500- 4000-5000 600 1200-1500-1800-2100- 2400-3000-3600-4200- 4800-6000 700 1400-1750-2100-2450- 2800-3500-4200-4900- 5600-6300 800 1260-1575-1890-2205- 2520-3150-3780-4410- 5040-6300 Instantaneous pick up current Variation is within $\pm 15 \%$ of setting current $\begin{aligned} & 4 \operatorname{In} \sim 12 \ln \\ & 3200 \sim 9600 \end{aligned}$
Low-inst	-	-
	-	-
	-	-
Generator	-	-
	-	-
Rating (A) and Inst. (A)	-	-
Mag-Only (Inst trip only)	-	-
	-	-
	-	-

Frame (A)	1000	
Type	NF1000-SS	
Rated current In (A)	500-600-700-800-900-1000	
Rated insulation voltage Ui (V) AC	690	
AC Breaking capacity (kA rms) IEC60947-2 Icu/Ics	25/13	
	65/33	
	85/43	
	85/43	
	125/63	
Standard $\quad \begin{aligned} & \text { Number of poles } \\ & \\ & \begin{array}{l}\text { Automatic tripping } \\ \text { device }\end{array}\end{aligned}$	34	
	Solid-state Adjustable ampere rating Adjustable short time delay pick up Fixed instantaneous pick up	
Rating (A) and Inst. (A)	Short time delay pick up current Variation is within $\pm 10 \%$ of the setting current 5-7.5-10 In	
Low-inst $\quad \begin{aligned} & \text { Number of poles } \\ & \begin{array}{l}\text { Automatic tripping } \\ \text { device }\end{array}\end{aligned}$	34	
	Solid-state Adjustable ampere rating Adjustable instantaneous pick up	
Rating (A) and Inst. (A)	Variation is within $\pm 10 \%$ of the setting current $5-7.5-10$ In $3-4.5-6$ In 500 $2500-3750-5000$ $1500-2250-3000$ 600 $3000-4500-6000$ $1800-2700-3600$ 700 $3500-5250-7000$ $2100-3150-4200$ 800 $4000-6000-8000$ $2400-3600-4800$ 900 $4500-6750-9000$ $2700-4050-5400$ 1000 $5000-7500-10000$ $3000-4500-6000$	$\begin{gathered} 2-3-4 \text { In } \\ 1000-1500-2000 \\ 1200-1800-2400 \\ 1400-2100-2800 \\ 1600-2400-3200 \\ 1800-2700-3600 \\ 2000-3000-4000 \end{gathered}$
$\begin{array}{ll} \text { Generator } & \begin{array}{l} \text { Number of poles } \\ \cline { 3 - 3 } \\ \text { Automatic tripping } \\ \text { device } \end{array} \end{array}$	$3 \quad 4$	
	Solid-state Adjustable ampere rating Adjustable instantaneous pick up	
Rating (A) and Inst. (A)	Variation is within $\pm 10 \%$ of the setting current $3-4.5-6$ In $2-3-4$ In 500 $1500-2250-3000$ $1000-1500-2000$ 600 $1800-2700-3600$ $1200-1800-2400$ 700 $2100-3150-4200$ $1400-2100-2800$ 800 $2400-3600-4800$ $1600-2400-3200$ 900 $2700-4050-5400$ $1800-2700-3600$ 1000 $3000-4500-6000$ $2000-3000-4000$	
$\begin{array}{ll} \text { Mag-Only } & \text { Number of poles } \\ \text { (Inst trip only) } & \text { Automatic tripping } \\ \text { device } \end{array}$	34	
	Solid-state Adjustable ampere rating Adjustable instantaneous pick up	
Rating (A) and Inst. (A)	Variation is within $\pm 10 \%$ of the setting current	

Frame (A)			250	
Type		NF	250-SS	
Rated current In (A)		600-700-800	1000-1200-1250	
Rated insulation voltage Ui (V) AC			690	
AC Breaking capacity (kA rms) IEC60947-2 Icu/Ics	690 V		5/13	
	s) 500 V		5/33	
	2440 V		5/43	
	400 V		5/43	
	230 V		25/63	
	Number of poles	4		
	Automatic tripping device	Solid-state Adjustable ampere rating Adjustable short time delay pick up Fixed instantaneous pick up		
	Rating (A) and Inst. (A)	Short time delay pick up current Variation is within $\pm 10 \%$ of the setting current	$\begin{aligned} & +4000 \\ & -2000 \end{aligned}$	
Low-inst $\begin{gathered}\text { N } \\ \\ \\ \end{gathered}$	Number of poles	34		
	Automatic tripping device	Solid-state Adjustable ampere rating Adjustable instantaneous pick up		
	Rating (A) and Inst. (A)	Variation is within $\pm 10 \%$ of the setting current $5-7.5-10$ In 600 $3000-4500-6000$ 700 $3500-5250-7000$ 800 $4000-6000-8000$ 1000 $5000-7500-10000$ 1200 $6000-9000-12000$ 1250 $6250-9375-12500$	3-4.5-6 In 1800-2700-3600 2100-3150-4200 2400-3600-4800 3000-4500-6000 3600-5400-7200 3750-5625-7500	$\begin{gathered} 2-3-4 \text { In } \\ 1200-1800-2400 \\ 1400-2100-2800 \\ 1600-2400-3200 \\ 2000-3000-4000 \\ 2400-3600-4800 \\ 2500-3750-5000 \end{gathered}$
	Number of poles	3		
	Automatic tripping device	Solid-state Adjustable ampere rating Adjustable instantaneous pick up		
	Rating (A) and nst. (A)	Variation is within $\pm 10 \%$ of the setting current $3-4.5-6$ In $2-3-4$ In 600 $1800-2700-3600$ $1200-1800-2400$ 700 $2100-3150-4200$ $1400-2100-2800$ 800 $2400-3600-4800$ $1600-2400-3200$ 1000 $3000-4500-6000$ $2000-3000-4000$ 1200 $3600-5400-7200$ $2400-3600-4800$ 1250 $3750-5625-7500$ $2500-3750-5000$		
$\begin{array}{ll}\text { Mag-Only } & \\ \text { (Inst trip only) } & \text { Au } \\ \text { de }\end{array}$	Number of poles	3 4		
	Automatic tripping device	Solid-state Adjustable ampere rating Adjustable instantaneous pick up		
	Rating (A) and nst. (A)	Variation is within $\pm 10 \%$ of the setting current $5-7.5-10$ In 600 $3000-5500-6000$ 700 $3500-5250-7000$ 800 $4000-6000-8000$ 1000 $5000-7500-10000$ 1200 $6000-9000-12000$ 1250 $6250-9375-12500$		

Frame (A)	1600
Type	NF1600-SS
Rated current In (A)	800-1000-1200-1400-1500-1600
Rated insulation voltage Ui (V) AC	690
AC Breaking 690V	25/13
capacity (kA rms) 500V	65/33
IEC60947-2 440V	85/43
Icu/Ics 400V	85/43
230 V	125/63
Number of poles	34
Automatic tripping device	Solid-state Adjustable ampere rating Adjustable short time delay pick up Fixed instantaneous pick up
Rating (A) and Inst. (A)	Short time delay pick up current Variation is within $\pm 10 \%$ of the setting current
Low-inst Number of poles	$3 \quad 4$
Automatic tripping device	Solid-state Adjustable ampere rating Adjustable instantaneous pick up
Rating (A) and Inst. (A)	Variation is within $\pm 10 \%$ of the setting current $3-4.5-6$ In 800 $2400-3600-4800$ $2-3-4$ In 1000 $3000-4500-6000$ $2000-2400-3200$ 1200 $3600-5400-7200$ $2400-3600-4000$ 1400 $4200-6300-8400$ $2800-4200-5600$ 1500 $4500-6750-9000$ $3000-4500-6000$ 1600 $4800-7200-9600$ $3200-4800-6400$
Number of poles	34
Automatic tripping device	Solid-state Adjustable ampere rating Adjustable instantaneous pick up
Rating (A) and Inst. (A)	
Mag-Only Number of poles Automatic tripping (Inst trip only) device	34
	Solid-state Adjustable ampere rating Adjustable instantaneous pick up
Rating (A) and Inst. (A)	Variation is within $\pm 10 \%$ of the setting current

[^2]
6. PROTECTIVE CO-ORDINATION

6.1 General

Type of System

The primary purpose of a circuit protection system is to prevent damage to series connected equipment and to minimise the area and duration of power loss. The first consideration is whether an air circuit breaker or moulded case circuit breaker is most suitable.
The next is the type of system to be used. The three major types are:
Fully Rated, Selective and Cascade Back-Up.

Fully Rated

This system is highly reliable, as all of the breakers are rated for the maximum fault level at the point of their installation. Discrimination (selective interruption) can be incorporated in some cases. The disadvantage is that high cost branch breakers may be necessary.

Selective-Interruption(Discrimination)
Selective Interruption requires that in the event of a fault, only the device directly before the fault will trip, and that other branch circuits of the same or higher level will not be affected. The range of selective Interruption of the main breaker varies considerably depending on the breaker used.

Cascade Back-Up Protection

This is an economical approach to the use of circuit breakers, whereby only the main (upstream) breaker has adequate interrupting capacity for the maximum available fault current. The mccb's downstream cannot handle this maximum fault current and rely on the opening of the upstream breaker for protection.

The advantage of the cascade back-up approach is that it facilitates the use of low cost, low fault level breakers downstream, thereby offering savings in both the cost and size of equipment.

As Mitsubishi mccb's have a very considerable current limiting effect, they can be used to provide this 'cascade back-up' protection for downstream circuit breakers.

6.2 Interrupting Capacity Consideration

Table 1 230VAC

Table 2 440VAC

6.3 Selective-Interruption (Discrimination)

6.3.1 Selective-Interruption Combination

Following tables show combinations of main-circuit selective coordination breakers and branch breakers and the available selective tripping current at the setting points at the branch-circuits.

Selection Conditions

1. The main breaker rated current, STD operating time and INST pickup current are to be set to the maximum values.
2. When selecting the over-current range, also check the conformity using the other characteristic curves.

<How to see the table>

Example 1

All rated current of branch breaker, type NF30-SP can fully discriminate with all rated current of main breaker, type NF400-SEP up to the fault levels, 5 kA that is the interrupting capacity of type NF30-SP.

Example 2

Some rated current of branch breaker, type NF160SP can discriminate with some rated current of main breaker, type NF630-SEP as shown by a deep color up up to the fault levels, 10 kA .6 denotes that the short-time delay pick up current of the main breaker, type NF630-SEP is set at $6 \times$ Ir notch or higher.

Example 3

Some rated current of branch breaker, type NF100-CP having low-inst. trip can discriminate with some rated current of main breaker, type NF400-SEP as shown by a deep color \qquad up to the fault levels, 7.5 kA .6 denotes that the short time delay pick up current of the main breaker, type NF400-SEP is set at $6 \times$ Ir notch or higher.

230VAC

440VAC

Ma	Breaker	Type			630	-S		
Branch Breaker		Icu(kA)	50					
Type	Icu (kA)	Rated current (A)	300	350	400	500	600	630
NF160-SP	25			lectiv	e	mit	urr	nt
			10					
		125	6	6	5	4	3	3
		150	8	7	6	5	4	3.5
		160	8	7	6	5	4	4

440VAC

Branch Breaker		Type	NF400-SEP					
		Icu(kA)	50					
Type	Icu (kA)	Rated current (A)	200	225	250	300	350	400
NF100-CP	10			lectiv	ve li	mit		
		50	5	5	4	3.5	3	2.5
		60	6	5	5	4	3.5	3
		75	7	7	6	5	4	3.5
		100	10	10	8	7	6	5

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Main Breaker Branch Breaker		Type	NF100-SEP						NF250-SEP					
		Icu(kA)	50						50					
Type	Icu(kA)	Rated current (A)	30	40	50	60	75	100	125	150	175	200	225	250
BH-D6 Type B	6		Selective limit current											
			0.8			1.6			3.5					
		6												
		10												
		13												
		16	2.5											
		20	3	2.5										
		25	3.5	3	2.5									
		32	5	3.5	3	2.5								
		40	6	5	3.5	3	2.5							
		50	7	6	5	4	3	2.5						
		63	10	7	6	5	4	3	2.5					
$\begin{aligned} & \text { BH-D6 } \\ & \text { Type C } \end{aligned}$	6		Selective limit current											
			0.8			1.6			3.5					
		6												
		10	3											
		13	3.5	3	2.5									
		16	5	3.5	3	2.5								
		20	6	4	3.5	3	2.5							
		25	7	5	4	3.5	3	2.5						
		32	10	7	6	5	4	3	2.5					
		40		8	7	6	5	3.5	3	2.5	2.5			
		50		10	8	7	6	5	3.5	3	2.5	2.5		
		63			10	10	7	6	5	3.5	3.5	3	2.5	2.5
BH-D10 Type B	10		Selective limit current											
			0.8			1.6			3.5					
		6												
		10												
		13												
		16	2.5											
		20	3	2.5										
		25	3.5	3	2.5									
		32	5	3.5	3	2.5								
		40	6	5	3.5	3	2.5							
		50	7	6	5	4	3	2.5						
		63	10	7	6	5	4	3	2.5					
BH-D10 Type C	10		Selective limit current											
			0.8			1.6			3.5					
		6												
		10	3											
		13	3.5	3	2.5									
		16	5	3.5	3	2.5								
		20	6	4	3.5	3	2.5							
		25	7	5	4	3.5	3	2.5						
		32	10	7	6	5	4	3	2.5					
		40		8	7	6	5	3.5	3	2.5	2.5			
		50		10	8	7	6	5	3.5	3	2.5	2.5		
		63			10	10	7	6	5	3.5	3.5	3	2.5	2.5

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Main Breaker Branch Breaker		Type	NF100-SEP						NF250-SEP						NF400-SEP						NF630-SEP					
		Icu(kA)	50						50						85						85					
Type	$\operatorname{Icu}(\mathrm{kA})$	Rated current (A)	30	40	50	60	75	100	125	150	175	200	225	250	200	225	250	300	350	400	300	350	400	500	600	630
NF30-SP	5		Selective limit current																							
			0.8			1.6			3.5						5						5					
		3																								
		5																								
		10	4	3	2.5																					
		15	6	5	3.5	3	2.5																			
		20	8	6	5	4	3	2.5																		
		30		10	7	6	5	3.5	3	2.5																
NF50-CP	5		Selective limit current																							
			0.8			1.6			3.5						5						5					
		10	4	3	2.5																					
		15	6	5	3.5	3	2.5																			
		20	8	6	5	4	3	2.5																		
		30		10	7	6	5	3.5	3	2.5																
		40			10	8	6	5	4	3	3	2.5			2.5											
		50				10	8	6	5	4	3.5	3	2.5	2.5	3		2.5									
NF50-HP	25		Selective limit current																							
			0.8			1.6			3.5						10						20					
		10	4	3	2.5																					
		15	6	5	3.5	3	2.5																			
		20	8	6	5	4	3	2.5																		
		30		10	7	6	5	3.5	3	2.5																
		40			10	8	6	5	4	3	3	2.5			2.5											
		50				10	8	6	5	4	3.5	3	2.5	2.5	3		2.5									
NF60-CP	5		Selective limit current																							
			1.6						3.5						5						5					
		60					10	7	6	5	4	3.5	3	3	3.5	3	3	2.5			2.5					
NF60-HP	25		Selective limit current																							
			1.6						3.5						10						20					
		60					10	7	6	5	4		3	3	3.5	3	3	2.5			2.5					
NF100-CP	25		Selective limit current																							
									3.5						7.5						10					
		50							8	7	6	5	5	4	5	5	4	3.5	3	2.5	2.5	2.5				
		60							10	8	7	6	5	5	6	5	5	4	3.5	3	3	2.5	2.5			
		75								10	8	7	7	6	7	7	6	5	4	3.5	4	3.5	3	2.5		
		100										10	10	8	10	10	8	7	6	5	5	5	4	3	2.5	2.5
NF100-SP	50		Selective limit current																							
									3.5						7.5						15					
		15							2.5																	
		20							3	2.5	2.5															
		30							5	4	3.5	3	2.5	2.5	3	2.5	2.5									
		40							6	5	5	4	3.5	3	4	3.5	3	2.5	2.5							
		50							8	7	6	5	5	4	5	5	4	3.5	3	2.5	2.5	2.5				
		60							10	8	7	6	5	5	6	5	5	4	3.5	3	3	2.5	2.5			
		75								10	8	7	7	6	7	7	6	5	4	3.5	4	3.5	3	2.5		
		100							10 10 8						10	10	8	7	6	5	5	5	4	3	2.5	2.5
$\underset{\text { T/A }}{\substack{\text { NF100-SP }}}$	50		Selective limit current																							
									3.5						7.5						15					
		15 ~ 20							2.5																	
		20 ~ 25							3	2.5	2.5															
		$25 \sim 40$							4	3.5	3	2.5	2.5		2.5	2.5										
		$40 \sim 63$							6	5	5	4	3.5	3	4	3.5	3	2.5	2.5		2.5					
		6380							10	8	7	6	6	5	6	6	5	4	3.5	3	3.5	3	2.5			
		$80 \sim 100$								10	10	8	7	6	8	8	6	5	5	4	5	3.5	3.5	2.5	2.5	
NF100-HP	100		Selective limit current																							
									3.5						10						25					
		15							2.5																	
		20							3	2.5	2.5															
		30							5	4	3.5	3	2.5	2.5	3	3.5	2.5									
		40							6	5	5	4	3.5	3	4	3.5	3	2.5	2.5							
		50							8	7	6	5	5	4	5	5	4	3.5	3	2.5	2.5	2.5				
		60							10	8	7	6	5	5	6	5	5	4	3.5	3	3	2.5	2.5			
		75								10	8	7	7	6	7	7	6	5	4	3.5	4	3.5	3	2.5		
		100										10	10	8	10	10	8	7	6	5	5	5	4	3	2.5	2.5
$\begin{gathered} \text { NF100-HP } \\ \text { T/A } \end{gathered}$	100		Selective limit current																							
									3.5						10						25					
		15 ~ 20							2.5																	
		$20 \sim 25$							3	2.5	2.5															
		$25 \sim 40$							4	3.5	3	2.5	2.5		2.5	2.5										
		$40 \sim 63$							6	5	5	4	3.5	3	4	3.5	3	2.5	2.5		2.5					
		63 ~ 80							10	8	7	6	6	5	6	6	5	4	3.5	3	3.5	3	2.5			
		$80 \sim 100$								10	10	8	7	6	8	8	6	5	5	4	5	3.5	3.5	2.5	2.5	

Icu: Rated breaking capacity

Main Breaker Branch Breaker		Type	NF800-CEP					NF800-SEP					NF1000-SS				NF1250-SS					NF1600-SS				
		Icu(kA)	50					85					125				125					125				
Type	Icu(kA)	Rated current (A)	4004	45050	500600	700	800	40045	450500	0600	700	800	5006	60070	800	9001000	600	700	$800 \mid 1000$	120012	1250		1000120		15001600	
NF30-SP	5		Selective limit current																							
			5					5					\| 5				5					5				
		3																								
		5																								
		10																								
		15																								
		20																								
		30																								
NF50-CP	5		Selective limit current																							
			5 年 5										5 5				5					5				
		10																								
		15																								
		20																								
		30																								
		40																								
		50																								
NF50-HP	25		Selective limit current																							
			20 20										25				25					25				
		10																								
		15																								
		20																								
		30																								
		40																								
		50																								
NF60-CP	5		Selective limit current																							
			5 5										5				5					5				
		60																								
NF60-HP	25																									
			20.20										Selective limit current				25					25				
		60																								
NF100-CP	25		Selective limit current																							
			10 15										2 25				25					25				
		50																								
		60	2.5					2.5																		
		75		2.52	2.5			32.	2.52 .5																	
		100	43	3.5	32.5	2.5			3.53	2.5	2.5															
NF100-SP	50		Selective limit current																							
			15 年 15										50				50					50				
		15																								
		20																								
		30																								
		40																								
		50																								
		60	2.5					2.5																		
		75	32	2.52	2.5			32.	2.52 .5																	
		100	43	3.5	32.5	2.5			3.53	2.5	2.5															
$\begin{gathered} \text { NF100-SP } \\ \text { T/A } \end{gathered}$	50		Selective limit current																							
			15 \|l	ll 15										\| 50				50					50			
		15 ~ 20																								
		$20 \sim 25$																								
		$25 \sim 40$																								
		$40 \sim 63$																								
		$63 \sim 80$		2.5				2.52.	2.5																	
		$80 \sim 100$		32	2.52 .5			3.52.	2.52 .5																	
NF100-HP	100		Selective limit current																							
			25.25										100				100					100				
		15																								
		20																								
		30																								
		40																								
		50																								
		60	2.5					2.5																		
		75	32	2.52	2.5			32.	2.52 .5																	
		100	43	3.5	32.5	2.5		43.	3.53	2.5	2.5															
$\underset{\text { T/A }}{\substack{\text { NF100-HP }}}$	100		Selective limit current																							
			25.25										100				100					100				
		15 ~ 20																								
		$20 \sim 25$																								
		$25 \sim 40$																								
		$40 \sim 63$																								
		$63 \sim 80$	2.52	2.5				2.52.	2.5																	
		$80 \sim 100$	3.5	32	2.52 .5			3.52.	2.52 .5																	

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Main Breaker Branch Breaker		Type	NF100-SEP						NF250-SEP						NF400-SEP						NF630-SEP					
		Icu(kA)	50						50						85						85					
Type	Icu(kA)	Rated current (A)	30	40	50	60	75	100	125	150	175	200	225	250	200	225	250	300	350	400	300	350	400	500	600	630
NF100-SEP	50		Selective limit current																							
									3.5						7.5						15					
		30							2.5																	
		40							3.5	3	2.5	2.5			2.5											
		50							5	3.5	3	3	2.5		3	2.5	2.5									
		60							6	5	3.5	3.5	3	2.5	3.5	3	2.5	2.5			2.5					
		75							7	6	5	4	3.5	3.5	4	4	3.5	3	2.5		3	2.5				
		100							10	8	6	6	5	5	6	5	5	3.5	3	3	3.5	3	3	2.5		
NF100-HEP	100		Selective limit current																							
									3.5						10						25					
		30							2.5																	
		40							3.5	3	2.5	2.5			2.5											
		50							5	3.5	3	3	2.5		3	2.5	2.5									
		60							6	5	3.5	3.5	3	2.5	3.5	3	2.5	2.5			2.5					
		75							7	6	5	4	3.5	3.5	4	4	3.5	3	2.5		3	2.5				
		100							10	8	6	6	5	5	6	5	5	3.5	3	3	3.5	3	3	2.5		
NF160-SP	50		Selective limit current																							
									3.5						6.4						10					
		125										10	10	8		10	10	8	7	6	6	6	5	4	3	3
		150												10				10	8	7	8	7	6	5	4	3.5
		160																10	8	7	8	7	6	5	4	4
$\begin{gathered} \text { NF160-SP } \\ \text { T/A } \end{gathered}$	50		Selective limit current																							
									3.5						6.4						10					
		$100 \sim 125$									10	10	8	7	10	8	7	6	5	5	5	5	4	3	3	2.5
		125 ~ 160									10	10	8	7	10	8	7	6	5	5	5	5	4	3	3	2.5
NF160-HP	100		Selective limit current 6.4																							
		125										10	10	8		10	10	8	7	6	6	6	5	4	3	3
		150												10				10	8	7	8	7	6	5	4	3.5
		160																10	8	7	8	7	6	5	4	4
$\begin{gathered} \text { NF160-HP } \\ \text { T/A } \end{gathered}$	100		Selective limit current																							
		100 ~ 125									10	10	8	7	10	8	7	6	5	5	5	5	4	3	3	2.5
		125 ~ 160									10	10	8	7	10	8	7	6	5	5	5	5	4	3	3	2.5
NF250-CP	30		Selective limit current																							
															6.4						7.5					
		125														10	10	8	7	6	6	6	5	4	3	3
		150																10	8	7	8	7	6	5	4	3.5
		175																10	10	8	8	7	6	5	4	4
		200																	10	10	10	10	8	6	5	5
		225																		10		10	8	7	6	6
		250																	10	8	10	8	7	6	5	4
$\begin{gathered} \text { NF250-CP } \\ \text { T/A } \end{gathered}$	30		Selective limit current																							
															6.4						7.5					
		$100 \sim 125$													10	8	7	6	5	5	5	5	4	3	2.5	2.5
		125 ~ 160													10	8	7	6	5	5	5	5	4	3	2.5	2.5
		150 ~ 200																10	8	7	8	7	6	5	4	3.5
		$200 \sim 250$																	10	8	10	8	7	6	5	4
NF250-SP	50		Selective limit current																							
															6.4						10					
		125														10	10	8	7	6	6	6	5	4	3	3
		150																10	8	7	8	7	6	5	4	3.5
		175																10	10	8	8	7	6	5	4	4
		200																	10	10	10	10	8	6	5	5
		225																		10		10	8	7	6	6
		250																	10	8	10	8	7	6	5	4
$\underset{\text { T/A }}{\substack{\text { NF250-SP }}}$	50		Selective limit current																							
																	6.						1			
		$100 \sim 125$													10	8	7	6	5	5	5	5	4	3	2.5	2.5
		125 ~ 160													10	8	7	6	5	5	5	5	4	3	2.5	2.5
		150 ~ 200																10	8	7	8	7	6	5	4	3.5
		$200 \sim 250$																	10	8	10	8	7	6	5	4
NF250-HP	100		Selective limit current																							
															6.4						10					
		125														10	10	8	7	6	6	6	5	4	3	3
		150																10	8	7	8	7	6	5	4	3.5
		175																10	10	8	8	7	6	5	4	3.5
		200																	10	10	8	7	6	5	4	4
		225																		10		10	8	6	5	5
		250																	10	8	10	8	7	6	5	4
$\underset{\mathrm{T} / \mathrm{A}}{\mathrm{NF} 250-\mathrm{HP}}$	100		Selective limit current																							
															6.4						10					
		$100 \sim 125$													10	8	7	6	5	5	5	5	4	3	2.5	2.5
		125 ~ 160													10	8	7	6	5	5	5	5	4	3	2.5	2.5
		150 ~ 200																10	8	7	8	7	6	5	4	3.5
		200 ~ 250																	10	8	10	8	7	6	5	4

Icu: Rated breaking capacity

Main Breaker Branch Breaker		Type	NF800－CEP					NF800－SEP						NF1000－SS				NF1250－SS				NF1600－SS				
		Icu（kA）	50					85						125				125				125				
Type	Icu（kA）	Rated current （A）	400	4505	500600	0700	800	400	450	500	600	7008	800	50060	600700	800	9001000		700800	$1000 \mid 12$						
NF100－SEP	50		Selective limit current																							
			15					18						［ 50				50				50				
		30																								
		40																								
		50																								
		60																								
		75																								
		100	3		2.5			3		2.5																
NF100－HEP	100		Selective limit current																							
			25					35						100				100				100				
		30																								
		40																								
		50																								
		60																								
		75																								
		100	3		2.5			3		2.5																
NF160－SP	50		Selective limit current																							
			10 年 10											50				50				50				
		125	5	4	$4{ }^{4} 3$	3	2.5	5	4	4	3		2.5													
		150	6	5	54	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
		160	6	5	54	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
$\begin{gathered} \text { NF160-SP } \\ \text { T/A } \end{gathered}$	50		Selective limit current																							
			10											50				50				50				
		$100 \sim 125$	4	3.5	32.5			4		3	2.5	2.5														
		125 ～ 160	4		32.5	52.5		4				2.5														
NF160－HP	100		Selective limit current																							
			10 年 10											50				50				50				
		125	5	4	$4{ }^{4} 3$	3	2.5	5	4	4	3	3	2.5													
		150	6	5	54	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
		160	6	5	54	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
$\begin{gathered} \text { NF160-HP } \\ \text { T/A } \end{gathered}$	100		Selective limit current																							
			10 10											50				50				50				
		$100 \sim 125$	4	3.5	32.5	52.5		4	3.5	3	2.5	2.5														
		125 ～ 160	4	3.5	32.5	52.5		4	3.5	3	2.5	2.5														
NF250－CP	30		Selective limit current																							
														25				25				25				
		125	5	4	$4{ }^{4} 3$	3	2.5	5	4	4	3	3	2.5													
		150	6	5	5	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
		175	7	6	5	4	3.5	7	6	5	5	4	3.5		7.5			7.5				4.54	4.5			
		200	8	7	65	5	4	8	7	6	5	5	4		7.5				7.5			64	4.54	． 4.5		
		225	8	8	76	5	4	8	8	7	6	5	4		7.5	7.5			7.57 .5			64	4.54	． 4.5	4.5	
		250	Selective limit current																							
$\begin{gathered} \mathrm{NF} 250-\mathrm{CP} \\ \hline \text { T/A } \end{gathered}$	30																									
			7.5 年 7.5											25				25				25				
		$100 \sim 125$	4	3.5	32.5	2 2.5		4	3.5	3	2.5	2.5														
		125 ～ 160	4	3.5	32.5	52.5		4	3.5	3	2.5	2.5														
		150 ～ 200	6	5	5	3.5	3	6	5	5	4	3.5	3									4.5				
		$200 \sim 250$	7	6	6 6	4	3.5	7	6	6	5	4	3.5									4.54	4.5			
NF250－SP	50		Selective limit current																							
			10 年 10											50				50				50				
		125	5	4	$4{ }^{4} 3$	3	2.5	5	4	4	3	3	2.5													
		150	6	5	5	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
		175	7	6	5	4	3.5	7	6	5	5	4	3.5		7.5			7.5				4.54	4.5			
		200	8	7	65	5	4	8	7	6	5	5	4		7.5				7.5			64	4.54.	． 5		
		225	8	8	76	5	4	8	8	7	6	5	4		7.5	7.5			7.57 .5				4.54.	． 4.5		
		250	7	6	6 6	4	3.5	7	6	6	5	4	3.5									4.54	4.54	．		
$\underset{\text { T/A }}{\substack{\text { NF250-SP }}}$	50		Selective limit current																							
			10											50				50				50				
		$100 \sim 125$	4	3.5	32.5	［2．5		4	3.5	3	2.5	2.5														
		125 ～ 160	4	3.5	32.5	52.5		4	3.5	3	2.5	2.5														
		150 ～ 200	6	5	5	3.5	3	6	5	5	4	3.5	3									4.5				
		$200 \sim 250$	7	6	$6 \quad 5$	4	3.5	7	6	6	5	4	3.5									4.54	4.5			
NF250－HP	100		Selective limit current																							
			10					10						50				50				50				
		125	5	4	$4{ }^{4} 3$	3	2.5	5	4	4	3	3	2.5													
		150	6	5	5	3.5	3	6	5	5	4	3.5	3	7.5								4.5				
		175	7	6	5	4	3.5	7	6	5	5	4	3.5		7.5			7.5				4.54	4.5			
		200	8	7	65	5	4	8	7	6	5	5	4		7.5				7.5			64	4.54.	． 5		
		225	8	8	76	5	4	8	8	7	6	5	4		7.5	7.5			7.57 .5			64	4.54.	． 4.5		
		250	9	6	65	4	3.5	7	6	6	5	4	3.5									4.54	4.54	．		
$\begin{gathered} \text { NF250-HP } \\ \text { T/A } \end{gathered}$	100		Selective limit current																							
			10 ｜ 10											｜ 50				50				50				
		$100 \sim 125$	4	3.5	32.5	5 2.5		4	3.5	3	2.5	2.5														
		125 ～ 160	4	3.5	32.5	52.5		4	3.5	3	2.5	2.5														
		$150 \sim 200$	6	5	5	3.5	3	6	5	5	4	3.5	3									4.5				
		200 ～ 250	7	6	6 5	4	3.5	7	6	6	5	4	3.5									4.54	4.5			

Icu：Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Icu: Rated breaking capacity

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 440VAC (Sym. kA)

Icu: Rated breaking capacity

Main Breaker Branch Breaker		Type	NF800－CEP					NF800－SEP						NF1000－SS				NF1250－SS					NF1600－SS				
		Icu（kA）	36					42						85				85					85				
Type	$\operatorname{lcu}(\mathrm{kA})$	Rated current （A）	4004	45050	500600	00700	800	400	450		60070		800		60070	200 800	9001000	600		8001000	$1200 \mid 1$						
NF30－SP	5		Selective limit current																								
			2.5					2.5						－ 5				5					5				
		3																									
		5																									
		10																									
		15																									
		20																									
		30																									
NF50－CP	5		Selective limit current																								
			2.5 2．5											｜ 5				5					5				
		10																									
		15																									
		20																									
		30																									
		40																									
		50																									
NF50－HP	10		Selective limit current																								
			10 年 10											－ 10				10					10				
		10																									
		15																									
		20																									
		30																									
		40																									
		50																									
NF60－CP	5		Selective limit current																								
			2.5					2.5						－ 5				5					5				
		60																									
NF60－HP	10		Selective limit current																								
			$10 \quad 10$											10				10					10				
		60																									
NF100－CP	10		Selective limit current																								
			10 年 10											10				10					10				
		50																									
		60																									
		75	3	2.52	2.5			3	2.5	2.5																	
		100	43	3.5	32.	2.52 .5		4		32	2.52	2.5															
NF100－SP	30		Selective limit current																								
			10 10											22				22					22				
		15																									
		20																									
		30																									
		40																									
		50																									
		60																									
		75	32	2.52	2.5			3		2.5																	
		100	43	3.5	32.	2.52 .5		4		32		2.5															
$\begin{gathered} \text { NF100-SP } \\ \text { T/A } \end{gathered}$	30		Selective limit current																								
			10 年 10											22				22					22				
		15 ～ 20																									
		$20 \sim 25$																									
		$25 \sim 40$																									
		40 ～ 63																									
		$63 \sim 80$		2.5					2.5																		
		$80 \sim 100$		32	2.5					2.5																	
NF100－HP	50		Selective limit current																								
														50				50					50				
		15																									
		20						－																			
		30																									
		40																									
		50																									
		60																									
		75	32	2.52	2.5			3		2.5																	
		100	43	3.5	32	2.52 .5		4		32	2.52	2.5															
$\begin{gathered} \text { NF100-HP } \\ \text { T/A } \end{gathered}$	50		Selective limit current																								
			18 年 18											50				50					50				
		15 ～ 20																									
		$20 \sim 25$																									
		25 ～ 40																									
		$40 \sim 63$																									
		63 ～ 80	2.52	2.5				2.5	2.5																		
		$80 \sim 100$	3.5	32	2.5			3.5	3	2.5																	

Icu：Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 440VAC (Sym. kA)

\qquad Main Breaker Branch Breaker		Type	NF100-SEP						NF250-SEP						NF400-SEP						NF630-SEP																						
		Icu(kA)	30						50						50						50																						
Type	Icu(kA)	Rated current (A)	30	40	50	60	75	100	125	150	175	200	225	250	200	225	250	300	350	400	300	350	400	500	600	630																	
NF100-SEP	25		Selective limit current																																								
									3.5						5						10																						
		30							2.5																																		
		40							3.5	3	2.5	2.5			2.5																												
		50							5	3.5	3	3	2.5		3	2.5	2.5																										
		60							6	5	3.5	3.5	3	2.5	3.5	3	2.5	2.5			2.5																						
		75							7	6	5	4	3.5	3.5	4	4	3.5	3	2.5		3	2.5																					
		100							10	8	6	6	5	5	6	5	5	3.5	3	3	3.5	3	3	2.5																			
NF100-HEP	50		Selective limit current																																								
									3.5						7.5						18																						
		30							2.5																																		
		40							3.5	3	2.5	2.5			2.5																												
		50							5	3.5	3	3	2.5		3	2.5	2.5																										
		60							6	5	3.5	3.5	3	2.5	3.5	3	2.5	2.5			2.5																						
		75							7	6	5	4	3.5	3.5	4	4	3.5	3	2.5		3	2.5																					
		100							10	8	6	6	5	5	6	5	5	3.5	3	3	3.5	3	3	2.5																			
NF160-SP	25		Selective limit current																																								
		125										10	10	8		-					6	6	5	4	3	3																	
		150												10							8	7	6	5	4	3.5																	
		160																			8	7	6	5	4	4																	
$\underset{\text { T/A }}{\text { NF160-SP }}$	25		Selective limit current																																								
		100 ~ 125							10 10 10 10				8	7							5	5	4	3	2.5	2.5																	
		$125 \sim 160$											10 10 8 7												5	5	4	3	2.5	2.5													
NF160-HP	50																																										
									3.5												10																						
		125										10	10	8														6	6	5	4	3	3										
		150												10							8	7	6	5	4	3.5																	
		160																			8	7	6	5	4	4																	
$\underset{\text { T/A }}{\text { NF160-HP }}$	50		Selective limit current																																								
		100 ~ 125									10	10	8	7							5	5	4	3	2.5	2.5																	
		$125 \sim 160$									10	10	8	7							5	5	4	3	2.5	2.5																	
NF250-CP	15		Selective limit current ${ }^{\text {l }}$																																								
		125																			6	6	5	4	3	3																	
		150																			8	7	6	5	4	3.5																	
		175																			10	8	7	5	5	4																	
		200																			10	10	8	6	5	5																	
		225																				10	8	7	6	6																	
		250																					10	8	6	6																	
$\begin{gathered} \text { NF250-CP } \\ \text { T/A } \end{gathered}$	15		Selective limit current ${ }^{\text {l }}$																																								
		$100 \sim 125$																			5	5	4	3	2.5	2.5																	
		125 ~ 160																			5	5	4	3	2.5	2.5																	
		150 ~ 200																			8	7	6	5	4	3.5																	
		$200 \sim 250$																			10	8	7	6	5	4																	
NF250-SP	25		Selective limit current																																								
		125																			6	6	5	4	3	3																	
		150																			8	7	6	5	4	3.5																	
		175																			10	8	7	5	5	4																	
		200																			10	10	8	6	5	5																	
		225																				10	8	7	6	6																	
		250																					10	8	6	6																	
$\underset{\text { T/A }}{\substack{\text { NF250-SP }}}$	25		Selective limit current																																								
		$100 \sim 125$																			5	5	4	3	2.5	2.5																	
		125 ~ 160																			5	5	4	3	2.5	2.5																	
		$150 \sim 200$																			8	7	6	5	4	3.5																	
		$200 \sim 250$																			10	8	7	6	5	4																	
NF250-HP	50		Selective limit current																																								
																					10																						
		125																			6	6	5	4	3	3																	
		150																			8	7	6	5	4	3.5																	
		175																			10	8	7	5	5	4																	
		200																			10	10	8	6	5	5																	
		225																				10	8	7	6	6																	
		250																					10	8	6	6																	
$\underset{T / A}{\text { NF250-HP }}$	50		Selective limit current																																								
																					10																						
		$100 \sim 125$																			5	5	4	3	2.5	2.5																	
		125 ~ 160																			5	5	4	3	2.5	2.5																	
		150 ~ 200																			8	7	6	5	4	3.5																	
		200 ~ 250																			10	8	7	6	5	4																	

Icu: Rated breaking capacity

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 440VAC (Sym. kA)

Branch Breaker Breaker		Type	NF100-SEP						NF250-SEP						NF400-SEP						NF630-SEP					
		Icu(kA)	50						50						85						85					
Type	Icu(kA)	Rated current (A)	30	40	50	60	75	100	125	150	175	200	225	250	200	225	250	300	350	400	300	350	400	500	600	630
NF250-SEP	25		Selective limit current																							
																							10			
		125																			5	4	3.5	3	2.5	2.5
		150																			6	5	4	3.5	3	2.5
		175																			6	6	5	4	3	3
		200																			7	6	6	5	3.5	3.5
		225																			8	7	6	5	4	4
		250																			10	8	7	6	5	5
NF250-HEP	50		Selective limit current																							
																							10			
		125																			5	4	3.5	3	2.5	2.5
		150																			6	5	4	3.5	3	2.5
		175																			6	6	5	4	3	3
		200																			7	6	6	5	3.5	3.5
		225																			8	7	6	5	4	4
		250																			10	8	7	6	5	5
NF400-CP	25		Selective limit current																							
																							9.5			
		250																			10	8	7	6	5	5
		300																				10	8	7	6	5
		350																					10	8	6	6
		400																						10	7	7
NF400-SP	42		Selective limit current																							
																							9.5			
		250																					10	8	6	6
		300																						10	8	7
		350																						10	10	8
		400																							10	10
NF400-SEP	42		Selective limit current																							
																					9.5					
		200																			7	6	6	5	3.5	3.5
		225																			8	7	6	5	4	4
		250																			10	8	7	6	5	5
		300																				10	8	7	6	5
		350																					10	8	6	6
		400																						10	7	7
NF400-HEP	65		Selective limit current																							
		200																			7	6	6	5	3.5	3.5
		225																			8	7	6	5	4	4
		250																			10	8	7	6	5	5
		300																				10	8	7	6	5
		350																					10	8	6	6
		400																						10	7	7
NF630-CP	36		Selective limit current																							
		500																								
		600																								
		630																								
NF630-SP	42		Selective limit current																							
		500																								
		600																								
		630																								
NF630-SEP	42		Selective limit current																							
		300																								
		350																								
		400																								
		500																								
		600																								
		630																								
NF630-HEP	65		Selective limit current																							
		300																								
		350																								
		400																								
		500																								
		600																								
		630																								

Icu: Rated breaking capacity

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Icu: Rated breaking capacity

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Icu: Rated breaking capacity

\qquad Main Breaker Branch Breaker		Type	AE2000-SS						AE2500-SS						AE3200-SS						AE4000-SSC		
		$\operatorname{Ics}(\mathrm{kA})$	85						85						85						85		
Type	Icu(kA)	Rated current (A)		$1200 \mid 1$			$1800 \mid 2$	2000	1250						1600						3200	3600	4000
NF250-SP	50		In=1000 $\cdots \cdots 24(50) \quad 1600 \cdots$ 42(50)							Selective limit current$2000 \cdots 50 \times 2000$							$3200 \cdots 50$				$4000 \cdots 50$		
		125	3																				
		150	3	3					3														
		175	4	3	3				3	3													
		200	4	3	3	3			3	3	3				3								
		225	4	4	3	3	3		4	3	3				3	3							
		250	4	3	3				3	3													
$\begin{gathered} \text { NF250-SP } \\ \text { T/A } \end{gathered}$	50		In=1000 $\cdots \cdots 24(50)$				Selective limit current $1600 \cdots 42(50)$ $2000 \cdots 50$										$3200 \cdots 50$				$4000 \cdots 50$		
		$100 \sim 125$																					
		125 ~ 160																					
		150 ~ 200	3	3					3														
		$200 \sim 250$	4	3	3				3	3													
NF250-HP	100																$3200 \cdots 85$				$4000 \cdots 85$		
		125	3																				
		150	3	3					3														
		175	4	3	3				3	3													
		200	4	3	3	3			3	3	3				3								
		225	4	4	3	3	3		4	3	3				3	3							
		250	4	3	3				3	3													
$\underset{\text { T/A }}{\substack{\text { NF250-HP }}}$	100		$\mathrm{ln}=1000 \cdots \cdots 25(65)$				$1600 \cdots 85$			Selective limit current$2000 \cdots 850$2500							$3200 \cdots 85$				$4000 \cdots 85$		
		$100 \sim 125$																					
		125 ~ 160																					
		150 ~ 200	3	3					3														
		$200 \sim 250$	4	3	3				3	3													
NF250-SEP	50		$\begin{array}{\|llcc\|} \hline & & & \text { Selective limit current } \\ \text { In=1000 } \cdots \cdots 24(50) & 1600 \cdots 42(50) & 2000 \cdots 5 & 2500 \cdots \cdots \\ \hline \end{array}$														$3200 \cdots 50$				$4000 \cdots 50$		
		125																					
		150																					
		175	3																				
		200	3	3																			
		225	3	3					3														
		250	4	3	3				3	3													
NF250-HEP	100																$3200 \cdots 85$				$4000 \cdots 85$		
		125																					
		150																					
		175	3																				
		200	3	3																			
		225	3	3					3														
		250	4	3	3				3	3													
NF400-CP	50		 Sn Selective limit current														$3200 \cdots 50$				$4000 \cdots 50$		
		250	4	3	3				3	3													
		300	4	4	3	3	3		4	3	3				3								
		350	6	4	4	3	3	3	4	3	3	3			3	3							
		400	6	6	4	4	3	3	6	4	3	3	3	3	4	3	3						
NF400-SP	85		In=1000 $\cdots \cdots \begin{array}{lllllll}15(65) & 1600 & \cdots \cdots & 30 & (65)\end{array}$							Selective limit current$2000 \cdots \cdots(65)$$2500 \cdots \cdots$							$3200 \cdots 85$				$4000 \cdots 85$		
		250	6	4	4	3	3	3	4	3	3	3			3								
		300	6	6	4	4	3	3	6	4	4	3	3	3	4	3	3						
		350	8	6	6	4	4	4	6	4	4	4	3	3	4	4	3	3	3				
		400	8	6	6	6	4	4	6	6	6	4	4	3	6	4	4	3	3	3	3		
NF400-SEP	85																$3200 \cdots 85$				$4000 \cdots 85$		
		200	3	3																			
		225	3	3					3														
		250	4	3	3				3	3													
		300	4	4	3	3	3		3	3	3				3								
		350	6	4	4	3	3	3	4	3	3	3			3	3							
		400	6	6	4	4	3	3	4	4	3	3	3		4	3	3						
NF400-HEP	100		$\mathrm{In}=1000 \cdots \cdots \cdot 15(65) \quad 1600 \cdots \cdots 30(65)$							Selective limit current$2000 \cdots \cdots(65) \quad 2500 \cdots 70$							$3200 \cdots 85$				$4000 \cdots 85$		
		200	3	3																			
		225	3	3					3														
		250	4	3	3				3	3													
		300	4	4	3	3	3		3	3	3				3								
		350	6	4	4	3	3	3	4	3	3	3			3	3							
		400	6	6	4	4	3	3	4	4	3	3	3		4	3	3						

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 230VAC (Sym. kA)

Icu: Rated breaking capacity

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 440VAC (Sym. kA)

Icu: Rated breaking capacity

[^3]SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 440VAC (Sym. kA)

Icu: Rated breaking capacity

Icu: Rated breaking capacity

SELECTIVE-INTERRUPTION COMBINATIONS (DISCRIMINATION) 440VAC (Sym. kA)

Icu: Rated breaking capacity

Branch Breaker Main Breaker		Type	AE2000-SS						AE2500-SS						AE3200-SS						AE4000-SSC		
		Ics(kA)	85						85						85						85		
Type	Icu(kA)	Rated current (A)					18002	2000	1250	1500					1600						320		4000
NF630-CP	50		Selective limit current																				
		500		6	6	4	4	4	6	6	4	4	4	4	4	4	4	4	4				
		600			6	6	6	4	8	6	6	4	4	4	6	4	4	4	4	4	4	4	
		630			6	6	6	6		6	6	6	4	4	6	6	4	4	4	4	4	4	4
NF630-SP	50		Selective limit current																				
		500		8	8	6	6	6	8	6	6	6	4	4	6	6	4	4	4	4	4	4	4
		600			8	8	6	6		8	8	6	6	6	8	6	6	6	4	4	4	4	4
		630			10	8	8	6		8	8	6	6	6	8	6	6	6	4	4	4	4	4
NF630-SEP	85		S																				
		300	4	4	4	4	4		4	4	4				4								
		350	6	4	4	4	4	4	4	4	4	4			4	4							
		400	6	6	4	4	4	4	4	4	4	4	4		4	4	4	4					
		500	8	6	6	4	4	4	6	6	4	4	4	4	4	4	4	4	4				
		600	8	8	6	6	6	4	6	6	6	4	4	4	6	4	4	4	4	4	4	4	
		630	8	8	6	6	6	4	8	6	6	4	4	4	6	6	4	4	4	4	4	4	
NF630-HEP	100																						
		300	4	4	4	4	4		4	4	4				4								
		350	6	4	4	4	4	4	4	4	4	4			4	4							
		400	6	6	4	4	4	4	4	4	4	4	4		4	4	4	4					
		500	8	6	6	4	4	4	6	6	4	4	4	4	4	4	4	4	4				
		600	8	8	6	6	6	4	6	6	6	4	4	4	6	4	4	4	4	4	4	4	
		630	8	8	6	6	6	4	8	6	6	4	4	4	6	6	4	4	4	4	4	4	
NF800-CEP	50		Sn																				
		400	6	6	4	4	4	4	4	4	4	4	4		4	4	4						
		450	6	6	4	4	4	4	6	4	4	4	4	4	4	4	4	4					
		500	8	6	6	4	4	4	6	6	4	4	4	4	4	4	4	4	4				
		600	8	8	6	6	6	4	6	6	6	4	4	4	6	4	4	4	4	4	4	4	4
		700		8	8	6	6	6	8	6	6	6	4	4	6	6	4	4	4	4	4	4	4
		800			8	8	6	6	8	8	6	6	6	4	8	6	6	4	4	4	4	4	4
NF800-SEP	85																						
		400	6	6	4	4	4	4	4	4	4	4	4		4	4	4						
		450	6	6	4	4	4	4	6	4	4	4	4	4	4	4	4	4					
		500	8	6	6	4	4	4	6	6	4	4	4	4	4	4	4	4	4				
		600	8	8	6	6	6	4	6	6	6	4	4	4	6	4	4	4	4	4	4	4	4
		700		8	8	6	6	6	8	6	6	6	4	4	6	6	4	4	4	4	4	4	4
		800			8	8	6	6	8	8	6	6	6	4	8	6	6	4	4	4	4	4	4
NF800-HEP	100																						
		400	6	6	4	4	4	4	4	4	4	4	4		4	4	4						
		450	6	6	4	4	4	4	6	4	4	4	4	4	4	4	4	4					
		500	8	6	6	4	4	4	6	6	4	4	4	4	4	4	4	4	4				
		600	8	8	6	6	6	4	6	6	6	4	4	4	6	4	4	4	4	4	4	4	4
		700		8	8	6	6	6	8	6	6	6	4	4	6	6	4	4	4	4	4	4	4
		800			8	8	6	6	8	8	6	6	6	4	8	6	6	4	4	4	4	4	4

Icu: Rated breaking capacity

6.4 Cascade Back-up Protection

6.4.1 Cascade Back-up Combinations

Following tables show the available MCCB combinations for cascade interruption and their interrupting capacity.

440VAC

	Main MCCB		S																				C				U							
			$\begin{aligned} & \text { 웅 } \\ & \text { 을 } \\ & \frac{i}{z} \end{aligned}$			$\begin{aligned} & \text { 뭇 } \\ & \frac{0}{4} \\ & \frac{1}{2} \end{aligned}$		$\left\lvert\, \begin{gathered} \text { 뭇 } \\ \stackrel{0}{\hat{N}} \\ \stackrel{\sim}{2} \end{gathered}\right.$	$\left\|\begin{array}{c} 0 \\ o \\ 0 \\ \vdots \\ \frac{y}{2} \\ \hline \end{array}\right\|$																		$\stackrel{n}{n}$							
			25	50	25	50	25	50	50	65	125	50		65	125	50		65	125	85	85	85	15	25	35	35	125	200	125	200	200	200	200	125
	$\begin{aligned} & \text { NF30-SP } \\ & \text { MB30-SP } \\ & \text { MB50-CP } \end{aligned}$	2.5	10	14	5	5	5	5	-	-	-	-			-	-			-	-	-	-	5	-	-	-	35	125	35	50	-	-	-	-
	MB50-SP	7.5	14	20	15	10	15	10	15	10	10	10		10	10	10		10	10	10	-	-	-	10	10	-	50	125	50	50	10	10	10	10
	NF50-HP NF60-HP	10	20	30	18	-	18	-	15	15	15	14		14	14	-		-	-	-	-	-	-	-	-	-	125	125	50	50	-	-	-	-
	NF50-HRP	30	-	50	-	42	-	42	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	125	200	125	200	200	85	85	-
	NF100-SP MB100-SP	25	-	50	-	42	-	42	35	35	35	35		35	35	35		35	35	30	-	-	-	-	-	-	125	200	125	200	50	50	35	30
S	NF100-HP	50	-	-	-	-	-	-	-	65	65	-		65	65	-		65	65	-	-	-	-	-	-	-	125	200	125	200	200	85	85	65
	NF160-SP	25	-	-	-	-	-	-	35	50	50	50		35	50	50		35	50	50	-	-	-	-	-	-	-	-	125	200	85	85	85	-
	NF160-HP	50	-	-	-	-	-	-	-	65	65	65		-	65	65		- 6	65	65	-	-	-	-	-	-	-	-	125	200	200	200	200	65
	$\begin{aligned} & \text { NF250-SP } \\ & \text { MB225-SP } \end{aligned}$	25	-	-	-	-	-	-	35	50	50	35		50	50	35		50	50	-	-	-	-	-	-	-	-	-	125	200	85	85	85	-
	NF250-HP	50	-	-	-	-	-	-	-	65	65	-		65	65	-		65	65	-	-	-	-	-	-	-	-	-	125	200	200	200	200	65
	$\begin{aligned} & \text { NF400-SP } \\ & \text { NF400-SEP } \end{aligned}$	50	-	-	-	-	-	-	-	65	65	-		65	65	-		65	65	-	-	-	-	-	-	-	-	-	-	-	200	200	200	-
	$\begin{aligned} & \text { NF630-SP } \\ & \text { NF630-SEP } \end{aligned}$	50	-	-	-	-	-	-	-	-	-	-		65	65	-		65	65	-	-	-	-	-	-	-	-	-	-	-	-	200	200	-
	$\begin{aligned} & \hline \text { NF50-CP } \\ & \text { NF60-CP } \end{aligned}$	2.5	10	14	5	5	5	5	-	-	-	-			-	-		-	-	-	-	-	5	-	-	-	35	125	35	50	5	-	-	-
	NF100-CP	10	20	30	14	14	14	14	14	414	14	14		14	14	14		14	14	14	-	-	-	14	14	14	125	200	50	125	14	14	14	14
	NF250-CP	15	-	-	25	25	25	25	30	30	30	25		25	25	20		20	20	20	20	20	-	18	18	18	-	-	125	200	50	30	25	20
	NF400-CP	25	-	-	-	-	-	-	35	35	35	35		35	35	35		35	35	30	30	30	-	-	-	-	-	-	-	-	50	50	50	30
	NF630-CP	35	-	-	-	-	-	-	-	-	-	42		50	50	42		50	50	42	42	42	-	-	-	-	-	-	-	-	-	200	200	42

230VAC

Main MCCB			S																		C				U									
			年	$\begin{array}{\|c} \substack{1 \\ \vdots \\ \text { o } \\ \frac{2}{z} \\ \frac{1}{z} \\ 100} \end{array}$		$\begin{array}{\|c\|} \hline \text { 오 } \\ \dot{1} \\ \frac{1}{2} \\ \frac{2}{2} \\ \hline 100 \\ \hline \end{array}$						$\begin{array}{\|c\|} \hline 0 \\ \hline \\ \dot{\sim} \\ \stackrel{e}{e} \\ \frac{2}{2} \\ \hline 85 \\ \hline \end{array}$													$\begin{gathered} \frac{0}{c} \\ \frac{1}{\delta} \\ \frac{1}{2} \\ \frac{1}{2} \end{gathered}$			$\begin{aligned} & \text { Q } \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{N}{N} \\ & \stackrel{N}{2} \end{aligned}$				¢		
			30																50		50	50	125	200	125	200	2002	200	200	170				
	$\begin{aligned} & \text { NF30-SP } \\ & \text { MB30-SP } \\ & \text { MB50-CP } \end{aligned}$	5		42	50	10	10	10	10	-	-	-	-	-	-	-	-	-		-	-	- 7	7.5	-	-	-	125	200	35	50	-	-	-	-
	MB50-SP	10	42	85	35	35	35	35	30	30	30	30	30	30	-	-	-	-	-	-	25	14	14	-	125	200	85	125	-	-	-	-		
	$\begin{aligned} & \text { NF50-HP } \\ & \text { NF6O-HP } \end{aligned}$	25	50	100	50	50	50	50	50	50	50	50	50	50	-	-	-	-	-	-	-	30	30	-	125	200	85	125	-	-	-	-		
	NF50-HRP	85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	125	200	125	200	200	125	125	-		
	NF100-SP MB100-SP	50	-	100	-	85	-	85	85	85	85	85	85	85	-	-	-	-	-	-	-	-	-	-	125	200	125	200	200	125	125	-		
S	NF100-HP	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	125	200	125	200	200	25	125	-		
	NF160-SP	50	-	-	-	85	-	85	85	85	85	85	85	85	70	70	70	70	-	-	-	-	-	-	-	-	125	200	200	25	125	70		
	NF160-HP	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	125	200	200	200	200			
	$\begin{aligned} & \text { NF250-SP } \\ & \text { MB225-SP } \end{aligned}$	50	-	-	-	85	-	85	85	85	85	85	85	85	70	70	70	70	-	-	-	-	-	-	-	-	125	200	200	125	125	70		
	NF250-HP	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	125	200	200	200	200	-		
	$\begin{aligned} & \text { NF400-SP } \\ & \text { NF400-SEP } \end{aligned}$	85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100	100	-	-	-	-	-	-	-	-	200	200	200	100		
	NF630-SP NF630-SEP	85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100	100	-	-	-	-	-	-	-	-	-	200	200	100		
	$\begin{aligned} & \text { NF50-CP } \\ & \text { NF60-CP } \end{aligned}$	5	35	50	10	10	10	10	-	-	-	-	-	-	-	-	-	-	-	- 7	7.5	-	-	-	125	200	35	50	-	-	-	-		
	NF100-CP	25	35	85	50	50	50	50	50	50	50	50	50	50	-	-	-	-	-	-	-	30	30	-	125	200	85	125	50	50	-	-		
	NF250-CP	30	-	-	50	50	50	50	50	50	50	50	50	50	-	-	-	-	-	-	-	35	35	-	-	-	125	200	200	50	50	-		
	NF400-CP	35	-	-	-	-	-	-	85	85	85	85	85	85	85	85	85	85	85	85	-	-	-	-	-	-	-	-	200	200	200	85		
	NF630-CP	50	-	-	-	-	-	-	-	-	-	85	85	85	85	85	85	85	85	85	-	-	-	-	-	-	-	-	-		200	85		

6.5 $\mathrm{I}^{2} \mathrm{t}$ let-Through and Current Limiting Characteristics

$I^{2} \mathrm{t}$ let-through characteristics

short-circuit current,sym.r.m.s.(kA)

6.6 Protective Coordination with Wiring

6.6.1 General Considerations

If it is assumed that the heat generated by a large current passing through a wire is entirely dissipated within the wire, the following expression is applicable (for copper wires):

$$
\left(\frac{I}{S}\right)^{2} t=5.05 \times 10^{4} \log _{e} \frac{234+T}{234+T o}
$$

I : Current(A, rms)
S : Wire cross-sectional area $\left(\mathrm{mm}^{2}\right)$
t : Current let-through time(sec)
T : Wire temperature due to short circuit $\left({ }^{\circ} \mathrm{C}\right)$
To : Wire temperature before short circuit $\left({ }^{\circ} \mathrm{C}\right)$ Assume that short-circuit current occurs in a wire carrying its rated current (hot state $\mathrm{To}=60^{\circ} \mathrm{C}$). If $150^{\circ} \mathrm{C}$ is the allowable temperature T , the following expression is applicable (see also Fig. 6.13):

Table 6.4 Allowable Fault Conditions in Conductors

S Wire size $m m^{2}$	Allowable It $\mathrm{A}^{2} \times$ sec	Is Allowable short-circuit current accoeding to I ${ }^{2} t$ kA, sym. (PF)	
1	0.014×10^{6}	$1.17(0.9)$	
1.5	0.032×10^{6}	$1.76(0.9)$	
2.5	0.088×10^{6}	$2.93(0.9)$	
4	0.224×10^{6}	$4.68(0.9)$	
6	0.504×10^{6}	$6.79(0.8)$	
10	1.40×10^{6}	10.5	(0.6)
16	3.58×10^{6}	16.0	(0.5)
25	8.75×10^{6}	17.3	(0.3)
35	17.2×10^{6}	24.2	(0.3)
50	35.0×10^{6}	34.5	(0.3)
70	68.6×10^{6}	48.3	(0.3)
95	126×10^{6}	65.6	(0.3)
120	202×10^{6}	82.8	(0.3)
150	315×10^{6}	103	(0.3)
185	479×10^{6}	128	(0.3)
240	806×10^{6}	166	(0.3)

Notes: 1 . Allowable $\mathrm{I}^{2} \mathrm{t}$ is calculated assuming that all heat energy is dissipated in the conductor, conductor allowable maximum temperature exceeds $150^{\circ} \mathrm{C}$, and hot start is applied, at $60^{\circ} \mathrm{C}$.
2. I_{s} is an asym. value of allowable shortcircuit current reduced to below the allowable $\mathrm{I}^{2} \mathrm{t}$, assuming half cycle interruption for $16 \mathrm{~mm}^{2}$ or less and one cycle interruption for $25 \mathrm{~mm}^{2}$ or more.

Allowable $I^{2} t=14000 \mathrm{~S}^{2}$

Considering let-through energy (j i2dt) in a fault where the protector has no current-limiting capability, if shortcircuit occurs when let-through current is max., j^{2} dt is:

Approx. $\frac{\mathrm{Ie}^{2}}{71}\left(\mathrm{~A}^{2} \cdot \mathrm{sec}\right)$ in $\frac{1}{2} \begin{aligned} & \text { cycle interruption } \\ & \text { (Power factor is } 0.5 \text {. }\end{aligned}$
Approx. $\frac{\mathrm{Ie}^{2}}{34}\left(\mathrm{~A}^{2} \cdot \mathrm{sec}\right)$ in 1 cycle interruption
(Power factor is 0.3.)
where current le is the effective value of the AC component. Half-cycle interruption is applied to wire of up to $14 \mathrm{~mm}^{2}$, and one-cycle interruption to larger wires. Table 6.4 is restrictive in that, e.g., in a circuit of fault capacity of 5000 A or more, $2.5 \mathrm{~mm}^{2}$ wires would not be permitted. In practice, the impedance of the conductor itself presents a limiting factor, as does the inherent impedance of the MCCB, giving finite letthrough $\mathrm{I}^{2} t$ and Ip values that determine the actual fault-current flow.

Fig. 6.13 Temperature Rises Due to Current Flow in Copper Wires

6.6.2 600V Vinyl-Insulated Wire (Overcurrent)

Japanese Electrical Installations Technical Standards (domestic) specify vinyl-insulated wire operating temperature as $60^{\circ} \mathrm{C}$ max., being a $30^{\circ} \mathrm{C}$ rise over a $30^{\circ} \mathrm{C}$ ambient temperature. This is to offset aging deterioration attendant on elevated temperatures over long periods. Criteria for elevated temperatures over short periods have been presented in a study by B. W. Jones and J. A. Scott ("Short-Time Current Ratings for Aircraft Wire and Cable," AIEE Transactions), which proposes $150^{\circ} \mathrm{C}$ for periods of up to 2 seconds, and $100^{\circ} \mathrm{C}$ for periods in the order of 20 seconds. These criteria can be transposed to currents for different wire sizes by the curves given in Fig. 6.14. Such figures, however, must be further compensated for the difference between vinyl materials used for aircraft and for

Fig. 6.14 Relation of Let-through Current to Time until 600 V Vinyl-Insulated Wire Reaches a $70^{\circ} \mathrm{C}$ Temperature Rise. (In a Start from No Load State at Ambient Temperature of $30^{\circ} \mathrm{C}$)
ground use; ultimately, the temperature figure of $75^{\circ} \mathrm{C}$ is derived $\left(100^{\circ} \mathrm{C}\right.$ per Jones and Scott, compensated) as a suitable short-time limitation for wiring with heatproof vinyl or styrene-butadene-rubber insulation. Current transpositions for the range of wire sizes are not presented, being non-standard ; however, Fig. 6.15 gives MCCB ratings for temperature limitations of $30^{\circ} \mathrm{C}$ in normal operation, and $75^{\circ} \mathrm{C}$ for periods of up to 20

		$\stackrel{\sim}{\circ}$			0 -	으눈			응		¢ 운	\bigcirc	안
15													
20													
30													
40								Prote	ected	d re	egion		
50													
60													
75													
100													
125													
150													
175													
200													
225			npro	rotec	cted	ed re	egio						
250													
300													
350													
400													

Fig. 6.15 MCCBs and Wiring Sizes

seconds.

The apparent disparity of the ambient ratings of $30^{\circ} \mathrm{C}$ for wiring against $40^{\circ} \mathrm{C}$ for MCCBs, is reconcilable in that wiring, for the most part, is externally routed, while MCCBs are housed in panelboards or the like. The two figures can be used compatibly, without modification. It is further noted that, where MCCBs with longdelay elements of the thermal type are employed, the effect of increased ambient, which would normally derate the wiring, is adequately compensated by the attendant decrease in thermal-region tripping time of the MCCB.
The curves in Fig. 6.17 show the comparison of the delay regions of MCCB tripping with allowable currents in open-routed wiring. Fig. 6.16 shows the method required by the Japanese standards referred to above, for derating wiring to be routed in conduit.

Fig. 6.16 Wire Derating Method, for Conduit Routing

Fig. 6.17 600V Wire and MCCB Protection Compatibility

6.7 Protective Coordination with Motor Starters

Motor starters comprise a magnetic contactor and a thermal overload relay, providing the nesessary switching function for control of the motor, plus an automatic cutout function for overload protection. Mitsubishi Electric's excellent line of motor starters are available for a wide range of motor applications and are compatible with Mitsubishi MCCBs.
Magnetic contactors are rugged switching devices required to perform under severe load conditions without adverse affect. They are divided into Classes A through D (by capacity); Class A, e.g., must be able to perform 5 cycles of closing and opening of 10 times rated current, followed by 100 closing operations of the same current after grinding off $3 / 4$ of the contact thickness.
Current ratings of contactors usually differ according to the circuit rated voltage, since voltage determines arc energy, which limits current-handling capability.
Thermal overload relays (OLRs) employ bimetal elements (adjustable) similar to those of MCCBs.
For compatibility with the magnetic contactor, the OLR must be capable of interrupting 10 times the motor
full-load current without destruction of its heater element. Mitsubishi Type TH OLRs are normally capable of handing 12 to 20 times rated current; in addition there is available a unique saturable reactor for parallel connection to the heaters of some types, giving a fusion-proofing effect of $40 \sim 50$ times.

6.7.1 Basic Criteria for Coordination

It is necessary to ensure that the MCCB does not trip due to the normal starting current, but that the OLR cutout curve intersects the MCCB thermal delay-tripping curve between normal starting current and 10 times full-load current. The MCCB instantaneous-tripping setting should be low enough to protect the OLR heater element from fusion, in a short-circuit condition.
The above criteria should ensure that either the MCCB or the OLR will interrupt an overload, to protect the motor and circuit wiring, etc. In practice it is desirable for the MCCB instantaneous tripping to be set for about 15 times full-load current as a margin against transients, such as in reclosing after power failure, \mathbf{Y}-delta switching, inching, etc.

Fig. 6.18 Protective Coordination; MCCBs and Motor Starters

Fig. 6.19 Protection Coordination Criteria for MCCBs and Motor Starters

6.7.2 Levels of Protection (Short Circuit)

In some cases it may be advantageous to allow the starter to be damaged in the event of a short circuit, provided that the fault is interrupted and the load side is properly protected.
IEC standards defines 2 types of coordination, summarized as:

1. Type "1" coordination requires that, under shortcircuit conditions, the contactor or starter shall cause no danger to persons or installation and may not be suitable for further service without repair and replacement of parts.
2. Type "2" coordination requires that, under shortcircuit conditions, the contactor or starter shall cause no danger to persons or installation and shall be suitable for further use. The risk of contact welding is recognized, in which case the manufacturer shall indicate the measures to be taken as regards the maintenance of the equipment.

6.7.3 Motors with Long Starting Times

The usual approach is to select a starter with a larger current rating, but this method, of course, involves a degree of sacrifice of protection. Mitsubishi provides a unique solution to this problem in the form of a saturable reactor added to the OLR heater element. The effect is to change the high-current characteristics, so that nuisance tripping in starting is eliminated, without loss of overload protection. Mitsubishi saturable reactors are adjusted to allow around $25 \sim 30$ seconds of continuous starting current.

6.7.4 Motor Breakers (M Line MCCBs) and Magnetic Contactors

M Line MCCBs are provided with trip curves especially suitable for motor protection, with ratings based on motor full-load currents. They provide overcurrent and short-circuit protection, and are normally used with magnetic contactors. The need for protective coordination (as with a regular MCCB plus a starter) is eliminated, and the reliability of protection in a short-circuit condition is far higher than that of the heater of a starter OLR. Where the motor starting time is long, the MCCB tripping curve must be checked carefully, since tripping times are rather short in the delay-trip range. Care must also be taken with respect to surge conditions such as inching, reversing, restart, \mathbf{Y}-delta starting, etc.

6.7.5 Motor Thermal Characteristics

Overload currents in motors can lead to burnout, or insulation damage resulting in shock or fire hazard; the basic approaches to protection are (summarized from Japanese standards):

1. MCCB + magnetic contactor + OLR
2. Motor breaker + magnetic contactor
3. Motor breaker alone

In 1, the OLR is the primary interrupter of overload, and being adjustable, can be set for the true load requirement. Large overcurrent or short-circuit fault conditions are interrupted by the MCCB instantaneous trip. In 2, the motor breaker is the protector for both overload and short-circuit, and not being adjustable must be selected carefully, for best coordination with the load concerned. In 3 , since the MCCB is relied on not only for all protective functions but also for switching, this arrangement should be reserved for applications requiring infrequent motor starting and stopping.

6.7.6 Motor Starting Current

Motor starting times of up to 15 seconds are generally considered safe; more than this is considered undesirable; more than 30 seconds is considered dangerous and should be avoided wherever possible. For instantaneous tripping considerations, the MCCB is normally set to 600% of the motor full-load current, for trouble-free line-starting of an induction motor.
More detailed consideration is required where shorttime inrush effects (current magnification) are involved, such as in \mathbf{Y}-delta switching, running restart, etc. Two basic causations are as follows:

1. Superimposed DC Transient (Low Power-Factor Effect) Fig. 6.20 shows that the power factor is about 0.3 at starting, causing a significant DC component, so that the total transient inrush current may reach about twice the value of the AC component, even though the latter is of constant amplitude. Peak inrush current (It) of $1.4 \times$ normal starting current (lo) must be allowed for, in selecting the MCCB instanta-neous-trip setting.
2. Residual Voltage (Running Restart)

If residual (regenerative) voltages appearing at the motor terminals are out of phase with the supply voltage (at the time of reclosing after being interrupted, before the motor speed is substantially reduced), the cumulative effect of the line voltage and the residual voltage is equivalent to the motor being directly subjected to a large line overvoltage, with a resulting abnormal inrush current of:

Residual+source V
 Source V \times Normal starting inrush current

This is a current magnification effect, which may be as much as 2 x in direct restarting, and $\left(1+\frac{1}{\sqrt{3}}\right) \mathrm{x}$ in \mathbf{Y} -delta-switching restarting. When the DC-transient factor ($\S 1$ above) is added, the magnification becomes 2.4 in the case of direct restarting, and 1.9 for \mathbf{Y}-delta restarting.

Fig. 6.20 Transient DC Component

Fig. 6.21 Peak Inrush-Current Measurements

Thus, if normal starting current is assumed as 600\% of full-load current, the peak inrush becomes 1200\% in \mathbf{Y}-delta restarting and 1600% in direct restarting. The MCCB instantaneous-trip setting must be selected at larger than these values.
Fig. 6.21 shows test date with respect to four conditions of transient inrush current, expressed as magnifications of full-load current, measured on motors rated from $0.2 \sim 30 \mathrm{~kW}$. The MCCB was used for line-starting switching, and the contactor for the other switching duties. Phase matching between the line and residual voltages was uncontrolled.
The oscillographs taken showed that the peak inrush currents persist for about one-half cycle, followed by a rapid decrease to normal starting-current level. From the curves it can be concluded that peak inrush magnifications vary greatly depending on the duty involved; for reversing duty, the MCCB instantaneous trip settings must be selected from $1600 \sim 3400 \%$ of fullload current. For line starting and \mathbf{Y}-delta starting, the range spans from 1000~2000\%.

6.8 Coordination with Devices on the HighVoltage Circuit.

6.8.1 High-Voltage Power Fuse

The MCCB on the secondary (low-voltage) side of a power transformer must have tripping characteristics that provide protective coordination with the power fuse (PF) on the high-voltage side (Fig. 6.22). The MCCB must always trip in response to overcurrent, to ensure that the PF does not fuse or deteriorate by elevated temperature aging.
Fig. 6.23 shows the MCCB curve in relationship to the deteriorated PF curve (if this is unavailable, the average fusing curve reduced by 20% can usually be assumed). The PF characteristic can be converted to the secondary side, or the MCCB characteristic to the primary side; the curves must not overlap in the overcurrent region.
Where the MCCB instantaneous-tripping current of the MCCB is adjustable, difficulties in matching the curves can be overcome as shown, but a 10% margin must be included to allow for the tolerance of the MCCB tripping setting.
The shaded area in Fig. 6.23 belong to overcurrent region, the overcurrent generally occur at the lower circuit of MCCB2.
Thus, it may in some cases be better to accept a coordination between the PF and MCCB_{2}, permitting a mismatch between the PF and MCCB ${ }_{1}$.

Fig. 6.22 Protective Coordination of MCCBs and HV-Side PF

Fig. 6.23 Coordinated PF and MCCB Characteristics

6.8.2 Electronic MCCBs and HV PF

A basic requirement is that the deteriorated short-delay curve of the PF, and the short-delay trip curve of Electronic MCCB, which is shifted $+10 \%$ along the current axis, do not overlap.
To facilitate matching, the rated current of the PF should be as large as possible; however, there is an upper limit, as seen from the following criteria:

1. The rated current should be $1.5 \sim 2$ times the load current.
2. To ensure protection in the event of a short circuit, the PF must interrupt a current of 25 times the transformer rating within 2 seconds.
3. To ensure that the PF neither deteriorates nor fuses as a result of the transformer excitation surge current, the short-delay deterioration curve of the PF must be more than 0.1 seconds, at a current of 10 times the transformer rating. The " 10 times" factor becomes " 15 times" in the case of a singlephase transformer.

Fig. 6.24 Protective Coordination of Electorinic MCCBs and PF

Fig. 6.25 Coordinated PF and Electronic MCCB Characteristics

6.8.3 MCCBs and HV-Side OCR

An overcurrent-relay remote tripping device (OCR) on the HV side of the circuit must be coordinated with the MCCBs on the LV side. The OCR setting must take into consideration the coordination with the OCR at the power-utility substation and, at the same time, the following:

1. The setting of an OCR with an instantaneous-trip element must be at least 10 times the transformer current rating, to ensure that the excitation surge of the latter does not trip the OCR.
2. To ensure short-circuit protection, the OCR must operate within 2 seconds, at 25 times the transformer rated current.

Figs. 6.26 and 6.27 show the setup, and the coordinated characteristics converted to the low-voltage side. The turns ratio of the CT is $150: 5$, to match the rated primary current of 87.5 A . Considering cooperation of the OCR with the upper-ranking substation OCR, the OCR dial is normally set to 0.2 or less, or 1 second max. if it has an instantaneous trip element. On the Mitsubishi Type MOC-E general-purpose relay this is equivalent to dial setting No. 2. Latching-curve overlap, shown by the broken lines in Fig. 6.27, must be allowed for. The instantaneous trip is set to 30 A , in accordance with §1, above.

Fig. 6.26 Electronic MCCBs in Coordination with an HVSide OCR

For setting the Electronic MCCBs (800 and 600A versions of Type NF800-SEP), the short-delay tripping currents of both are set to MIN. NF800-SEP have negligible latching inertia, so that the reset characteristics (except in the instantaneous-trip region) can be regarded as the same as the tripping characteristics. Further, there is very little tolerance variation between units; thus, the tripping characteristics can be shown as a single line.

If the NF800-SEP short-delay trip current is set at MAX (where MIN and MAX respectively correspond to 2 and 10 times rated current), a 600A rating setting will correspond to 6000A tripping, and an 800A setting will correspond to 8000A tripping. In this case (at MAX setting), short-delay latching of the NF800-SEP will overlap the OCR latching (4710A, secondary conversion). But if the NF800-SEP and the OCR are all set to MIN, so that the latching values do not exceed 4710A, good coordination will be achieved.

As the OCR has an instantaneous-trip element, set at 30 A (secondary conversion 28.3 kA), the region of selective interruption between the OCR and the NF800-SEP will extend to this value.

Considering the coordination of the Electronic MCCBs with the lower-level MCCBs (NF250-CP), it
can be seen from Fig. 6.27 that the maximum trip curve (tolerance) of the C Line units matches well with the NF800-SEP curves, with no danger of overlap.

Fig. 6.27 Coordinated OCR and Electronic MCCB Characteristics

7. SELECTION

In selecting MCCBs for a particular application, in addition to purely electrical aspects of load and distribution conductor systems, physical factors such as panelboard configuration, installation environment, ambient-temperature variations, vibration, etc. must also be considered.

MCCBs are rated for an ambient of $40^{\circ} \mathrm{C}$, and where panelboard internal temperatures may exceed this, the MCCBs installed should be derated in accordance with Table 7.1.

1. Actual load currents may exceed the nominal-values.
2. Load currents may increase with time, due to deterioration of load devices (i.e., friction in motors).
3. Source voltage and frequency may vary.

Table 7.1 MCCB Deratings Due to Installation Factors

Panelboard max. internal temp. $\left({ }^{\circ} \mathrm{C}\right)$	Load allowable, due to panelboard temp. (\%)
50	90
55	80
60	70

Fig. 7.1 MCCB Selection Consideration

7.1 Motor Branch Circuits

The following discussion assumes single motors and cold-start operation.

7.1.1 General Considerations

The starting current (I_{MS}) and time (T_{MS}) for the motor, and its full-load current, dictate the rated current, long-delay trip and instantaneous-trip curves for the MCCB as shown in Fig. 7.2. A safety-margin of up to 50% should be considered for the starting time, to allow for voltage variations and increase in load friction.

The instantaneous-trip curve should be at least 1.4 x normal starting current to allow for the effect of the DC component attendant to the low power factor (about 0.3) of the starting current. For Y-delta starting the unphased-switching allowance increases the 1.4 margin to 1.9. For running restarting the unphasedswitching allowance increases the factor to 2.4.

Fig. 7.2 MCCB and Motor Starting

7.1.2 Motor Breaker

Where starting times are relatively short and currents are small, the Mitsubishi M Line motor breakers can be used without the need for a motor starter.

7.2 For Lighting and Heating Branch Circuits

In such circuits, switching-surge magnitudes and times are normally not sufficient to cause spurious tripping problems; however, in some cases, such as mercuryarc lamps or other large starting-current equipment, the methods presented in $\S 7.1$ above should be considered.

In general, branch MCCBs should be selected so that the total of ratings of the connected loads is not more than 80% of the MCCB rating.

7.3 For Main Circuits

7.3.1 For Motor Loads

The method of "synthesized motors" is recommended - that is, the branch-circuit loads to be connected are divided into groups of motors to be started simultaneously (assumed), and then each group is regarded as a single motor having a full-load current of the total of the individual motors in the group. The groups are regarded as being sequentially started.

The rating of the branch MCCB for the largest synthesized motor is designated I_{B} max., those of the subsequent synthesized motors as $I_{1}, I_{2}, \ldots I_{n-1}$. The rating of the main MCCB becomes:

$$
I_{\text {MAIN }}=I_{B} \max +\left(I_{1}+I_{2}+\ldots I_{n-1}\right) \times D
$$

where D is the demand factor (assumed as 1 if indeterminate).
7.3.2 For Lighting and Heating, and Mixed Loads For lighting and heating loads the rating of the main MCCB is given as the total of the branch MCCB ratings times the demand factor. For cases where both motor-load branches and lighting and heating branches are served by a common main MCCB, the summation procedures are handled separately, as described in the foregoing, then grand-totalized to give the main MCCB rating.

7.4 For Welding Circuits

7.4.1 Spot Welders

A spot welder is characterized by a short, heavy intermittent load, switched on the transformer primary side. The following points must be considered in MCCB selection:

1. The intermittent load must be calculated in terms of an equivalent continuous current.
2. The excitation transient surge due to the breaker being on the transformer primary side must be allowed for.

Fig. 7.3 Spot-Welder Circuit
The temperature rise of the MCCB and wiring depends on the thermal-equivalent continuous current. To convert the welder intermittent current into a ther-mal-equivalent continuous value (I_{e}), consider the current waveform (Fig. 7.4); load resistance (R) gives power dissipation:

$$
W=I_{1}{ }^{2} R t_{1}
$$

and average heat produced:

$$
\frac{W}{t_{1}+t_{2}}=\frac{I_{1}^{2} R t_{1}}{t_{1}+t_{2}}=I_{1}^{2} R \beta=R\left(I_{1} \sqrt{\beta}\right)^{2}
$$

where β is the duty factor, defined as

total conduction time

total time
This is equivalent to heating by a continuous current of $I_{1} \sqrt{\beta}$.
In the example of Fig. 7.4:

$$
I_{e}=I_{1} \sqrt{\beta}=1200 \times 0.0625=300(A)
$$

i.e., a continuous current of 300A will produce the average temperature. In practice, however, the instantaneous temperature will fluctuate as shown in Fig. 7.5 and the maximum value (T_{m}) will be greater than the average $\left(\mathrm{T}_{\mathrm{e}}\right)$ that would be produced by a continuous current of 300A. The operation of an MCCB thermal element depends on the maximum rather than the average temperature, so it must be selected not to trip at T_{m}; in other words, it is necessary to ensure that its hot-start trip delay is at least as great as the interval of current flow in the circuit. The rated current of a "mag-only" MCCB (which does not incorporate a thermal trip function) can be selected based on the thermal equivalent current of the load, allowing a margin of approximately 15% to the calculated value to accommodate supply-voltage fluctuations, equipment tolerance, etc. Thus:

$$
\mathrm{I}_{\mathrm{MCCB}}=\mathrm{I}_{\mathrm{e}} \times 1.15=300 \times 1.15=345(\mathrm{~A})
$$

The MCCB selected becomes the nearest standard value above 345A.

Fig. 7.4 Welder Intermittent Current

Fig. 7.5 Temperature Due to Intermittent Current
For practical considerations, rather than basing selection on welding conditions, the MCCB should be selected to accommodate the maximum possible duty, based on the capacity and specifications of the welder.

If the welder rated capacity, voltage and duty factor in Fig. 7.3 are $85 \mathrm{kVA}, 200 \mathrm{~V}$ and 50% respectively, the thermal-equivalent continuous current (le) be-
comes:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{e}} & =\frac{\text { rated capacity }}{\text { rated voltage }} \times \sqrt{\text { duty factor }} \\
& =\frac{85+10^{3}}{200} \times \sqrt{0.5}=300 \mathrm{~A}
\end{aligned}
$$

Hence, the MCCB rated current becomes:

$$
\mathrm{I}_{\mathrm{MCCB}}=\mathrm{I}_{\mathrm{e}} \times 1.15=300 \times 1.15=345 \mathrm{~A}
$$

(i.e., the next higher standard value).

The relationship between the duty factor, which does not exceed the working limitations, and the maximum permissible input I_{β} at the above duty factor is:

$$
I_{\beta}=\frac{I_{e}}{\sqrt{\beta}}=\frac{300}{\sqrt{\beta}}
$$

If the total period is taken as 60 seconds and the duty factor is converted into the actual period during which current flows, the above relationship can be expressed graphically as in Fig. 7.6. Thus, although the thermal equivalent current is 300A, the maximum permissible input current for a duty factor of 50% (30 seconds current flow) is 425A. For a duty factor of 6.25% (3.75 sec current flow) it is 1200 A . Even if the secondary circuit of the welder were short circuited, however, the resultant primary current would only increase by about 30% over the standard maximum welding current. If this is 400 kVA , the maximum primary current $\mathrm{I}_{\text {pmax }}$ is:

$$
\begin{aligned}
I_{\beta \max } & =\frac{\text { standard maximum input }}{\text { primary voltage }} \times 1.3 \\
& =\frac{400 \times 10^{3}}{200} \times 1.3=2600 \mathrm{~A}
\end{aligned}
$$

Hence the maximum input current I_{β} should be restricted to 2600 A .

The 75\% hot-start characteristic of the 350A Type NF400-SP breaker is shown by the broken line in Fig. 7.6, and the temperature-rise characteristics up to the upper limit of the welder, by the solid line. To ensure protection of the welder from burnout, the delay-trip characteristic is selected at higher than the solid line; however, to establish MCCB protection criteria, it is necessary to look at each welder individually.

Fig. 7.6 Welder Temperature Rise and MCCB Trip Curve

7.4.2 MCCB Instantaneous Trip and Transformer Excitation Surge

When a welding-transformer primary circuit is closed, depending upon the phase angle at the instant of closure, a transient surge current will flow, due to the super-imposed DC component and the saturation of the transformer core.

In order to prevent spurious tripping of protective devices resulting from such surges, and also to maintain constant welding conditions, almost all welders currently available are provided with a synchronized switch-on function, with or without wave-peak control.

With synchronized switch-on, the measured ratio between the RMS value of the primary current under normal conditions and the maximum peak transient current ranges from $\sqrt{2} \sim 2$.

For nonsynchronized soft-starting-type welders the measured ratio is a maximum of 4 .

Maximum instantaneous transient surge excitation currents for various starting methods are as follows: Synchronized switch-on welders with wave peak control:

$$
\mathrm{I}_{\max }=\sqrt{2} \times \mathrm{I}_{\beta \max }
$$

Synchronized switch-on welders without wave peak control:

$$
\mathrm{I}_{\max }=2 \times \mathrm{I}_{\beta \max }
$$

Nonsynchronized switch-on welders with soft start:

$$
I_{\max }=4 \times I_{\beta \max }
$$

Nonsynchronized switch-on welders without soft start:

$$
I_{\max }=20 \times I_{\beta \max }
$$

If synchronized switch-on is employed, the transient surge excitation currents are relatively consistent, so that the relationship $I_{\max }=2 \mathrm{I}_{\beta \max }$ is sufficient.

For a synchronized switch-on type welder of maximum primary input $\left(I_{\beta \max }\right)=2600 \mathrm{~A}$

$$
I_{\max }=2 \times I_{\beta \max }=2 \times 2600=5200 \mathrm{~A}
$$

Since MCCB instantaneous trip currents are specified in terms of RMS value, $\mathrm{I}_{\text {inst }}$ is as follows:

$$
\mathrm{I}_{\text {inst }}=\frac{\mathrm{I}_{\mathrm{max}}}{\sqrt{2}}=\frac{5200}{\sqrt{2}}=3680 \mathrm{~A}
$$

The MCCB should be selected so that $\mathrm{I}_{\text {inst }}$ is smaller than the lower tolerance limit, of the instantaneous trip current.

7.4.3 Arc Welders

An arc welder is an intermittent load specified. The MCCB rating can by selected by converting the load current into thermal-equivalent continuous current. If this is taken as the rated current, however, the current duration per cycle will become relatively long, with the attendant danger of thermal tripping of the MCCB. In the total period of 10 minutes, if the duty factor is 50%, a 141% overload exists for 5 minutes; if the duty factor is 40%, a 158% overload exists for 4 minutes; and if the duty factor is 20%, a 224% overload exists
for 2 minutes. Thus:

$$
\mathrm{I}_{\mathrm{MCCB}} \geq \frac{1.2 \times \mathrm{P} \times 10^{3}}{\mathrm{E}}
$$

where 1.2: Allowance for random variations in arc-welder current, and supply-voltage fluctuations
P: Welder rated capacity (kVA)
E: Supply voltage (V)
The switching transient in the arc welder is measured as $8 \sim 9$ times the primary current. Consequently, using 1.2 allowance, it is necessary to select instan-taneous-trip characteristics such that the MCCB does not trip with a current of 11 times the primary current.

7.5 MCCBs for Transformer-Primary Use

Transformer excitation surge current may possibly exceed 10 times rated current, with a danger of nuisance tripping of the MCCB. The excitation surge current will vary depending upon the supply phase angle at the time of switching, and also on the level of core residual magnetism. The maximum is as shown for switching-point P in Fig. 7.7. During the half cycle following switch-on the core flux will reach the sum of the residual flux ϕ_{r}, plus the switching-surge flux $2 \phi_{\mathrm{m}}$.

The total, $2 \phi_{\mathrm{m}}+\phi_{\mathrm{r}}$, represents an excitation current in excess of the saturation value. The decay-time constant of this tends to be larger for larger transformer capacities. Table 7.2 shows typical values of excitation surge current, but as these do not take circuit impedance into account, the actual values will be larger. If both the primary leakage impedance and circuit impedance are known, the surge current may be derived by considering the transformer as an air core reactor; otherwise the values in Table 7.2 should be used. This table gives maximum values, however, that are based on the application of rated voltages to rated taps; it should be noted that supply overvoltage will result in even larger surges.

Since it is the instantaneous-trip function of the MCCB that responds to the transient current, ther-mal-magnetic MCCBs, which can more easily be manufactured to handle high instantaneous-trip currents, are advantageous over completely electromagnetic types, where the instantaneous-trip current is a relatively small multiple of the rated current.

Table 7.2 Transformer Excitation Surge Currents

Capacity (kVA)	1ph transformer		3ph transformer	
	First 1/2-cycle peak	Decay time constant	First 1/2-cycle peak	Decay time constant
5	$(\text { multiple })^{1}$	$(\mathrm{~Hz})$	$(\text { multiple })^{1}$	$(\mathrm{~Hz})$
10	37	4	26	4
15	37	4	26	4
20	35	5	26	4
30	35	5	26	4
50	34	6	26	4
75	34	6	23	5
100	29	6	18	5
150	28	6	17	5
200	24	8	14	6
300	22	8	13	6
500	18	9	13	8

Note: 1 "Multiple" means the first 1/2-cycle peak as a multiple of the rated-current peak.
Table 7.3 Transformer Capacities and Primary-Side MCCBs

Tran. kVA	MCCB Type (rated current (A))				
	1 phase 230V	1 phase 400V	3 phase 230V	3 phase 400V	
5	NF100-SP (75)	NF100-SP (40)	NF50-SP (50)	NF30-SP	30)
7.5	NF100-SP (100)	NF100-SP (60)	NF100-SP (40)	NF50-SP	(40)
10	NF250-SP (150)	NF100-SP (75)	NF100-SP (60)	NF50-SP	(50)
15	NF250-SP (200)	NF250-SP (125)	NF100-SP (100)	NF100-SP	(50)
20	NF400-SP (300)	NF250-SP (150)	NF250-SP (125)	NF100-SP	60)
30	NF400-SP (400)	NF250-SP (225)	NF250-SP (175)	NF100-SP	(100)
50	NF630-SEP (600)	NF400-SP (400)	NF400-SP (250)	NF250-SP	(150)
75	NF1000-SS (500)	NF630-SP (500)	NF400-SP (300)	NF250-SP	(175)
100	NF1000-SS (500)	NF630-SP (630)	NF400-SP (400)	NF250-SP	(225)
150	NF1000-SS (800)	NF1000-SS (500)	NF630-SP (500)	NF400-SP	(300)
200	NFE2000-S (1200)	NF1000-SS (600)	NF630-SP (600)	NF400-SP	(350)
300	NFE2000-S (1500)	NF1000-SS (900)	NF1000-SS (900)	NF630-SP	(600)
500	-	NFE2000-S (1400)	NF1600-SS (1400)	NF1000-SS	900)

Fig. 7.7 Excitation Surge Effects

In MC CB selection for 400 V , 50kVA transformerprimary used, rated RMS current is:

$$
\mathrm{I}=\frac{\text { Capacity }(\mathrm{kVA}) \times 10^{3}}{\sqrt{3} \times \text { Voltage }(\mathrm{V})}=\frac{50 \times 10^{3}}{\sqrt{3} \times 400}=72.2 \mathrm{~A}
$$

From Table 7.2, the peak value of the excitation surge current $I \phi$ is 23 times that of the rated current, hence:

$$
\mathrm{I} \phi=23 \times \sqrt{2} \mathrm{I}=23 \times \sqrt{2} \times 72.2 \mathrm{~A}=2348 \mathrm{~A}
$$

Thus the MCCB selected should have instantaneous trip current of no less than 2348A. The Type NF250SP 150A MCCB, with:

$$
\text { linst }=\sqrt{2} \times 150 \times 11.2=2376 A
$$

satisfies the above condition. Thus the 3-pole version of this type is suitable for this application.

Examples of MCCBs selected in this way are shown in Table 7.3; it is necessary to confirm that the shortcircuit capacities of the breakers given are adequate for the possible primary-side short-circuit current in each case.

7.6 MCCBs for Use in Capacitor (PF Correction) Circuits

The major surge tendency results from circuit opening due to the leading current. If the capacitor circuit of Fig. 7.8 is opened at time t_{1} in Fig. 7.8, arc extinction will occur at time t_{2}, the zero-point of the leading current (i). Subsequently the supply-side voltage (V_{t}) will vary normally, but the load-side voltage $\left(\mathrm{V}_{\mathrm{c}}\right)$ will be maintained at the capacitor charge value. The potential difference $\left(\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{t}}\right)$ will appear across the MCCB contacts and at time t_{3}, approximately $1 / 2$-cycle after t_{2}, will become about twice the peak value of the supply voltage (E_{m}). If the MCCB contacts are not sufficiently open, an arc will reappear across the gap, resulting in an oscillatory capacitor discharge (at a frequency determined by the circuit reactance, including the capacitor) to an initial peak-to-peak amplitude of $4 \mathrm{E}_{\mathrm{m}}$. When the arc extinguishes, V_{c} will once again be maintained at a potential of $-\mathrm{E}_{\mathrm{m}}$ and the potential difference across the MCCB contacts will increase again. This cycle will repeat until the gap between the contacts becomes too great, and the interruption will be completed.

Since Mitsubishi MCCBs exhibit extremely rapid contact separation, repetitive arcing is virtually non-
existent; however, some MCCBs do not make and break so rapidly, and in such cases, if the load capacitance is large enough, they will not discharge quickly, and if the arc extinguishes near the peak of the reverse-going oscillation voltage, the capacitor voltage will be maintained in the region of $-3 \mathrm{E}_{\mathrm{m}}$ by the first restriking of the arc; at the second restrike it will become $5 \mathrm{E}_{\mathrm{m}}$, on the third $-7 \mathrm{E}_{\mathrm{m}}$, etc., ultimately leading to breakdown of the capacitor. Thus, rapid switching is essential in leading power-factor circuits.

In selecting an MCCB, first consider the surge current. If the supply voltage is V volts, the capacitor C farads, the frequency f Hertz and the current I amp, the kVA rating (P) becomes:

For a three-phase system:

$$
1000 \mathrm{P}=\sqrt{3} \mathrm{VI}=2 \pi \mathrm{fCV}{ }^{2}
$$

For a single-phase system:

$$
1000 \mathrm{P}=\mathrm{VI}=2 \pi \mathrm{fCV}^{2}
$$

Fig. 7.8 Capacitor Circuit

Fig. 7.9 Circuit-Opening Conditions

Fig. 7.10 Accumulative Capacitor Charge
When the switch (Fig. 7.11) is closed, a charge ($q=C V$) must be instantaneously supplied to equal the
instantaneous supply voltage (V), according to the phase angle at the instant of circuit closure. This charge results in a large surge current. If the circuit is closed at the peak (E_{m}) of the supply voltage (V), the surge current (i), according to transient phenomena theory, is:

$$
i=\frac{2 E_{m}}{\sqrt{\frac{4 L}{C}-R^{2}}} \varepsilon^{-\frac{R}{2 L} t} \sin \frac{\sqrt{\frac{4 L}{C}-R^{2}}}{2 L} t
$$

From Fig. 7.12, the maximum value (i_{m}) is:

$$
i_{m}=\frac{E_{m}}{\sqrt{\frac{L}{C}}} \varepsilon-\frac{R}{\sqrt{\frac{4 L}{C}-R^{2}}} \arctan \frac{\sqrt{\frac{4 L}{C}-R^{2}}}{R}
$$

and appears at time $\mathrm{t}=\tau_{0}$ where:

$$
\tau_{0}=\frac{2 \mathrm{~L}}{\sqrt{\frac{4 \mathrm{~L}}{\mathrm{C}}-\mathrm{R}^{2}}} \arctan \frac{\sqrt{\frac{4 \mathrm{~L}}{\mathrm{C}}-\mathrm{R}^{2}}}{\mathrm{R}}
$$

Although V is not constant, τ_{0} is extremely small, so that $V=\mathrm{E}_{\mathrm{m}}$ can be assumed for the transient duration; similarly, the conduction time can be assumed as $2 \tau_{0}$. Thus, an MCCB for use in a capacitive circuit must have an instantaneous-trip current of greater than $\mathrm{i}_{\mathrm{m}} \times 2 \tau_{0}$.

Example: MCCB selection for a 3-phase 230 V 50 Hz 150 kVA capacitor circuit.

From Table 7.4, $\mathrm{C}=0.9026 \times 10^{-2}(\mathrm{~F})$ and $\mathrm{I}=$ 377(A).

The values of R and L in the circuit must be estimated, and for this purpose it is assumed that the short-circuit current is approximately 100 times the circuit capacity - i.e., 50,000A.
$Z=\sqrt{R^{2}+(2 \pi f L)^{2}} \therefore 50,000=\frac{V}{\sqrt{3} Z}$
thus: $Z=\frac{230}{\sqrt{3} \times 50,000}=2.66 \times 10^{-3}$
and assuming: $\frac{2 \pi f \mathrm{~L}}{\mathrm{R}}=5$
then: $2 \pi \mathrm{fL}=2.60 \times 10^{-3} \Omega$
thus: $R=5.21 \times 10^{-4} \Omega \quad L=8.29 \times 10^{-6}(H)$
since: $\mathrm{E}_{\mathrm{m}}=\frac{\sqrt{2}}{\sqrt{3}} \mathrm{~V}=188$, i_{m} and τ_{0} can be obtained from their respective formulas as,
$\mathrm{i}_{\mathrm{m}}=6200 \mathrm{~A}$
$\tau_{0}=4.27 \times 10^{-4}$ (sec).
Since current-flow duration is approximately $2 \tau_{0}$, an MCCB is selected with a latching time of 0.001 seconds at 6200A. The Type NF630-SP is suitable, having a latching time of 0.0029 seconds at 10,000A. Even with a shorter latching time, tripping is unlikely
under the application of the above current, but selection of an MCCB with an instantaneous-trip current of greater than $\frac{6200}{\sqrt{2}}=4400 \mathrm{~A}$ is recommended for an adequate safety margin. Such an MCCB will be rated at 600A. Accordingly, in this example the Type NF630SP, rated at 600 A , is selected. Table 7.4 is a basis for selection, but since, in cases where the short-circuit capacity of the circuit is considerably higher than that of the MCCB, spurious tripping due to the switching surge may occur, it is also necessary to make calculations along the lines of the above example.

Fig. 7.11 PF Correction Capacitor

FIg. 7.12 Currents and Voltages

7.7 MCCBs for Thyristor Circuits

Both overcurrent and overvoltage protection must be provided for these elements. MCCBs can be used effectively for overcurrent, although application demands vary widely, and selection must be made carefully in each case. Overvoltage protection must be provided separately; devices currently in use include lightning arresters, dischargers, RC filters and others.

1. MCCB Rated Currents

A primary factor determining the rated current of the MCCB to be used is the question of AC-side or DCside installation. AC-side installation permits a lower rating, which is a considerable advantage. Fig. 7.13 shows both AC and DC installation (MCCBs 1 and 2); Table 7.5 gives a selection of circuit formats and current configurations; using this table it is possible to determine the MCCB rating for either MCCB 1 or 2, as required. The current curve of the thyristor (average current is usually given) and the tripping curve of the MCCB should be rechecked to ensure that there is no possibility of overlap.

When an overcurrent is due to a fault in the load, causing a danger of thermal destruction of the circuit elements, either AC or DC protection is adequate, provided the parameters are properly chosen. When

Table 7.4 MCCB Selection for Circuits with PF-Correction
a) $230 \mathrm{~V}, 50 \mathrm{~Hz}$ Circuit

Capacitor rating		Single-phase circuit		Three-phase circuit	
kVA	$\mu \mathrm{F}$	Capacitor rated current (A)	MCCB rated current (A)	Capacitor rated current (A)	MCCB rated current (A)
5	301	21.7	40	12.6	20
10	602	43.5	75	25.1	40
15	903	65.2	100	37.7	60
20	1203	87.0	125	50.2	75
25	1504	108.7	175	62.8	100
30	1805	130.4	200	75.3	125
40	2407	173.9	250	100.4	150
50	3009	217.4	350	125.5	200
75	4513	326.1	500	188.3	300
100	6017	434.8	700	251.0	400
150	9026	652.2	1000	376.5	600
200	12034	869.6	1400	502.0	800
300	18052	1304.3	2000	753.1	1200
400	24069	1739.1	2500	1004.1	1500

b) $230 \mathrm{~V}, 60 \mathrm{~Hz}$ Circuit

Capacitor rating		Single-phase circuit		Three-phase circuit	
kVA	$\mu \mathrm{F}$	Capacitor rated current (A)	MCCB rated current (A)	Capacitor rated current (A)	MCCB rated current (A)
5	251	21.7	40	12.6	20
10	501	43.5	75	25.1	40
15	752	65.2	100	37.7	60
20	1003	87.0	125	50.2	75
25	1254	108.7	175	62.8	100
30	1504	130.4	200	75.3	125
40	2006	173.9	250	100.4	150
50	2507	217.4	350	125.5	200
75	3761	326.1	500	188.3	300
100	5014	434.8	700	251.0	400
150	7522	652.2	1000	376.5	600
200	10029	869.6	1400	502.0	800
300	15043	1304.3	2000	753.1	1200
400	20057	1739.1	2500	1004.1	1500

c) $400 \mathrm{~V}, 50 \mathrm{~Hz}$ Circuit

Capacitor rating		Single-phase circuit		Three-phase circuit	
kVA	$\mu \mathrm{F}$	Capacitor rated current (A)	MCCB rated current (A)	Capacitor rated current (A)	MCCB rated current (A)
5	99	12.5	20	7.2	15
10	199	25.0	40	14.4	30
15	298	37.5	60	21.7	40
20	398	50.0	75	28.9	50
25	497	62.5	100	36.1	60
30	597	75.0	125	43.3	75
40	796	100.0	150	57.7	100
50	995	125.0	200	72.2	125
75	1492	187.5	300	108.3	175
100	1989	250.0	400	144.3	225
150	2984	375.0	600	216.5	350
200	3979	500.0	800	288.7	500
300	5968	750.0	1200	433.0	700
400	7958	1000.0	1500	577.4	900

d) $400 \mathrm{~V}, 60 \mathrm{~Hz}$ Circuit

Capacitor rating			Single-phase circuit		Three-phase circuit	
kVA	$\mu \mathrm{F}$	Capacitor rated current (A)	MCCB rated current (A)	Capacitor rated current (A)	MCCB rated current (A)	
5	83	12.5	20	7.2	15	
10	166	25.0	40	14.4	30	
15	249	37.5	60	21.7	40	
20	332	50.0	75	28.9	50	
25	414	62.5	100	36.1	60	
30	497	75.0	125	43.3	75	
40	663	100.0	150	57.7	100	
50	829	125.0	200	72.2	125	
75	1243	187.5	300	108.3	175	
100	1658	250.0	400	144.3	225	
150	2487	375.0	600	216.5	350	
200	3316	500.0	800	288.7	500	
300	4974	750.0	1200	433.0	700	
400	6631	1000.0	1500	577.4	900	

Notes: 1. The MCCB rated current should be approx. 150\% of the capacitor rated current.
2. The MCCB short-circuit capacity should be adequate for the circuit short-circuit capacity.
the fault is in one of the thyristor elements, resulting in reverse current, the result is often that other circuit elements will be destroyed (see Fig. 7.14) if the circuit is not interrupted immediately. In this case ACside protection or protection in series with each element is necessary.

2. Tyristor Overcurrent Protection

Total protection of each element is possible in theory, but in practice overall coordination and the best compromise for economy are usually demanded. Where elements are critical, complex combinations of protective devices can be employed, at proportionally higher cost.

Basically, overcurrent leads to excessive temperature rise of the thyristor junction, resulting in loss of the control function, and thermal destruction. A fault, therefore, must be interrupted as quickly as possible, before the junction temperature rises above its specified limit. In the overcurrent region, designated on the current-surge withstand curves of the circuit element, the element can usually withstand the surge for at least one cycle. The current-surge withstand, generally specified as a peak value, must be converted to RMS, to select a suitable MCCB.

An overload of short-circuit proportion, either external or in a bridge-circuit thyristor element, necessi-

Fig. 7.13 AC- and DC-side Protectors for Thyristors

Fig. 7.14 Fault-Current Flow

Table 7.5 Thyristor Circuits and Current Formats

			Circuit No. I	Circuit No. II	Circuit No. III	Circuit No. IV	
Circuit diagram							
Element average current $I_{F}(A)$			$\frac{\mathrm{I}}{\mathrm{P}}$	$\frac{\mathrm{I}_{\mathrm{P}}}{\pi}$	$\frac{\mathrm{IP}}{\pi}$	$\frac{\mathrm{IP}}{\pi}$	
Element RMS current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$			$\frac{1 p}{2}$	$\frac{I_{P}}{2}$	$\frac{I_{P}}{2}$	$\begin{aligned} & \sqrt{\frac{1}{6}+\frac{M B}{4 \pi}} I_{P} \\ & \left(\fallingdotseq 0.552 I_{P}\right) \end{aligned}$	
$\begin{aligned} & \text { Average DC current } \\ & \mathrm{I}_{\mathrm{D}}(\mathrm{~A}) \end{aligned}$			I_{F}	21_{F}	21_{F}	$3 I_{F}$	
	$\begin{aligned} & \bar{m} \\ & 0 \\ & 0 \\ & \Sigma \end{aligned}$	RMS current $I_{B}(A)$	$\begin{aligned} & \frac{\pi}{2} I_{F} \\ & \text { or } \\ & \frac{\pi}{2} I_{D} \end{aligned}$	$\begin{aligned} & \frac{\pi}{2} I_{F} \\ & \text { or } \\ & \frac{\pi}{4} I_{D} \end{aligned}$	$\frac{\pi}{M R} \mathrm{I}_{\mathrm{F}}\left(\fallingdotseq 2.22 \mathrm{I}_{\mathrm{F}}\right)$ or $\frac{\pi}{2 \mathrm{MR}} \mathrm{I}_{\mathrm{D}}(\fallingdotseq 1.11 \mathrm{I} \mathrm{D})$	$\begin{aligned} & \pi \sqrt{\frac{1}{3}+\frac{\mathrm{MB}}{2 \pi}} \mathrm{I}_{\mathrm{F}} \\ & \left(\fallingdotseq 2.45 \mathrm{I}_{\mathrm{F})}\right. \\ & \quad \text { or } \\ & \frac{\pi}{3} \sqrt{\frac{1}{3}+\frac{\mathrm{MB}}{2 \pi}} \mathrm{I}_{\mathrm{D}} \\ & (\fallingdotseq 0.817 \mathrm{ID}) \end{aligned}$	
		Current waveform	$\int \downarrow_{\\|_{p}}$				
	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \\ & \Sigma \end{aligned}$	RMS current Ів (A)	$\begin{gathered} \mathrm{I}_{\mathrm{e}} \\ \text { or } \\ \frac{\pi}{2} \mathrm{I}_{\mathrm{D}} \end{gathered}$	$\begin{aligned} & \frac{\pi}{\mathrm{MR}} \mathrm{I}_{\mathrm{F}} \\ & \text { or } \\ & \frac{\pi}{2 M R} \mathrm{I}_{\mathrm{D}} \end{aligned}$	$\begin{aligned} & \frac{\pi}{\mathrm{MR}} \mathrm{I}_{\mathrm{F}} \\ & \text { or } \\ & \frac{\pi}{2 \mathrm{MR}} \mathrm{ID}_{\mathrm{D}} \end{aligned}$	$\begin{aligned} & \pi \sqrt{\frac{1}{2}+\frac{3 M B}{4 \pi}} \mathrm{I}_{\mathrm{F}} \fallingdotseq 3 \mathrm{I}_{\mathrm{F}} \\ & \text { or } \\ & \frac{\pi}{3} \sqrt{\frac{1}{2}+\frac{3 M B}{4 \pi}} \mathrm{I}_{\mathrm{D}} \fallingdotseq \mathrm{I}_{\mathrm{D}} \end{aligned}$	
		Current waveform	${\sqrt{\imath^{\prime}} I_{p}}$				

Note: Load is assumed resistive, with elements conductive through 180°.
tates rapid interruption of the circuit. Normally, such interruption takes place within one cycle; thus, from the point of view of element thermal destruction, the time integral of the current squared must be considered. Quantitatively, the permissible $\int \mathrm{i}^{2} \mathrm{dt}$ of the element must be greater than the $\int \mathrm{i}^{2} \mathrm{dt}$ of the MCCB current through interruption, converted to apply to the element. The latter is influenced by the short-circuit current magnitude, the interruption time, and the cur-rent-limiting capability of the MCCB.

It is important to note that the MCCB interruption time will be considerably influenced by the short-circuit current rise rate, di/dt, on the load side. In the short circuit of Figs. 7.15 and 7.16, the current is:

$$
i=\frac{E}{R}\left(1-\varepsilon^{-\frac{R}{L} t}\right)
$$

and the current rise rate di/dt is:

$$
\left(\frac{d i}{d t}\right)_{t=0}=\frac{E}{L}
$$

Thus, the inductance of the line, and the smoothing inductance significantly affect di/dt. Where the potential short-circuit current is very large, the inductance should be increased, to inhibit the rise rate and assist the MCCB to interrupt the circuit in safe time. This is illustrated in Fig. 7.17, for MCCB2 of Fig. 7.15.

The MCCB current during total time ($\mathrm{t} T$) is $\int \mathrm{i}^{2} \mathrm{dt}$, which, converted to the $\int \mathrm{i}^{2} \mathrm{dt}$ applied to the circuit element, must be within the limit specified. Having determined the circuit constants, testing is preferable to calculation for confirmation of this relationship.

Assuming a large current-rise rate, with an AC-side short-circuit current $\mathrm{i}=\mathrm{I}_{\mathrm{ps}} \sin \omega \mathrm{t}$, and an MCCB interruption time of one cycle, the $\int \mathrm{i}^{2} \mathrm{dt}$ applied to the thyristor is as follows:

1. For circuits I, II and III of Table 7.10:

$$
\int i^{2} d t=\int_{0}^{\frac{1}{2 f}} I_{p}^{2} \sin ^{2} \omega t d t=\frac{1}{4 f} I_{p}^{2} \quad\left(A^{2} \sec \right)
$$

2. For circuit IV:

$$
\int i^{2} d t=2 \int_{\frac{1}{6 f}}^{\frac{1}{3 t}} I_{p}^{2} \sin ^{2} \omega t d t=\frac{I_{p}^{2}}{f}\left(\frac{1}{6}+\frac{\sqrt{3}}{4 \pi}\right) \quad\left(A^{2} \sec \right)
$$

where I_{p} is the peak value of the element current and f is the supply frequency.

If the $\int i^{2} \mathrm{dt}$ of the circuit element is known, the permissible $\int i^{2} d t$ for the MCCB can be determined, using the last two equations given above. Provided that the interruption time is not greater than one cycle, the MCCB current will be the same as the element current for circuits I and II, and twice that for circuits III and IV. This means that the MCCB $\int \mathrm{i}^{2} \mathrm{dt}$ through the interruption time should be within twice the permissible $\int \mathrm{i}^{2} \mathrm{dt}$ of the element.

Diodes are generally stronger against overcurrent than thyristors, and since diodes can handle larger $\mathrm{I}^{2} \cdot \mathrm{t}$, protection is easier.

Fig. 7.17 shows the protection coordination situation of a selection of devices, plotted together with the thyristor current-surge withstand curve. AC-side
protection (MCCB1, Fig. 7.15) is presented, but the DC-protection case (MCCB2) can be plotted in the same way.

Region 2 in Fig. 7.17 is the area of overcurrent for which protection is effected by the MCCB. For protection of region 1, an overload relay is effective, and for region 2, inductance L must be relied on to limit the fault-current rise rate, or a high-speed current-limiting fuse must be used. Practical considerations, including economy and the actual likelihood of faults in the regions concerned, may dictate the omission of the protective devices for regions 1 and 3, in many cases. The lower the instantaneous-trip setting of the MCCB, the wider the region 2 coverage becomes.

Fig. 7.15 Thyristor Short Circuit

Fig. 7.16 Thyristor Short-Circuit Interruption

Fig. 7.17 Thyristor and Protector Operating Curves
3. Element Breakdown in Thyristor-Leonard Systems In this system of DC motor control, if power outage or commutation failure due to a thyristor control-circuit fault occurs during inversion (while motor regenerative power is being returned to the AC supply), the DC motor, acting as a generator while coasting, will be connected to a short-circuit path, as in Fig. 7.18. For thyristor protection, MCCBs must be placed in the DC side, as shown.

A Mag-Only MCCB with a tripping current of about 3 times the rated current is employed, either 3- or 4pole, series-connected as shown in Fig. 7.20. Since the element short-circuit current is the same as the MCCB current, circuit protection is effected provided that the $\int \mathrm{i}^{2} \mathrm{dt}$ limit for the element is larger than that for the MCCB interruption duration. This must be established by test.

Fig. 7.19 High-Speed Fuses for Thyristor-Circuit Protection

Fig. 7.18 Ward-Leonard Thyristor Protection

a) 3-pole MCCB

b) 4-pole MCCB

Fig. 7.19 shows connection of high-speed fuses for protection against thyristor breakdown that would otherwise result in short-circuit flow from the AC supply side.
4. MCCBs for Lamp Mercury-Lamp Circuits

The ballasts (stabilizers) used in this type of lamp cover a variety of types and characteristics. For 200V applications (typical), choke-coil ballasts are used. For 100 V applications a leakage-transformer ballast is employed. Normal ballasts come in low power-factor versions and high power-factor versions, with correction capacitors. More sophisticated types include the constant-power (or constant-output) type, which maintains constant lamp current both in starting and normal running, and flickerless types, which minimize the flicker attendant on the supply frequency.

In selecting an MCCB where normal (high or low PF) ballasts are to be used, the determining factor is the starting current, which is about 170% of the stable running current. In the cases of constant-power or flickerless types, the determining factor is the normal running current, which is higher than the starting cur-
rent. For MCCB selection, the latter types can be regarded as lighting and heating general loads, as previously discussed.

For selection of MCCBs for regular ballasts, the 170% starting current is assumed to endure for a maximum of 5 minutes. MCCBs of 100A or less frame size have a tripping value very close to rating for overloads of duration of this order, so that the MCCB rating should be the nearest standard value above 170\% of the stable running current. MCCBs of above 100A frame size can handle a current of around 120% of the rating for 5 minutes without tripping; thus the nearest standard MCCB rating above $\frac{1.7}{1.2}=1.4$ times the stable-running current of the lamp load is the suitable protector.

As an example, consider MCCB selection for 10 units of $100 \mathrm{~W}, 100 \mathrm{~V}, 50 \mathrm{~Hz}$ general-purpose high power-factor mercury lamps. The stable-running current per lamp is 1.35 A . Thus:
$1.35 \times 10 \times 1.7=23 \mathrm{~A}$, and the selection becomes NF30-SP, 30A rated.

7.8 MDU Breaker

Structure and Motion

The MDU breaker is a circuit breaker equipped with the MDU (Measuring Display Unit) which measures and digitally displays electric circuit information. Combining the circuit breaker, CT, VT and measuring display unit, saves space and wiring, allows monitoring of various electric circuits and the energy load conditions.

7.8.1 Measurement

(a) Motion

As shown in Fig. 7.21, the electric current of each phase is transformed by the primary CT and inputted into the overload relay circuit for an electronic NFB. The electric current is transformed by the secondary CT and sent to the measuring display unit, MDU. Line voltage is converted to a signal in proportion to the voltage signal by resistance, transformed by the VT equivalent CT and inputted into the MDU. The MDU measures and displays by the electric current and voltage signals. Fig. 7.22 shows the internal block diagram of a model without voltage/electric power measuring functions. The frequency detection circuit provides an electric circuit frequency for measurement calculation.

Fig. 7.22 MDU Breaker Circuit Diagram (without voltage and electric power measurement)

Fig. 7.21 MDU Breaker Circuit Diagram

MDU converts the electric current and voltage signals from CT and VT into the voltage signal through the I/V conversion section. This signal is selected by a multiplexer and digitized at an A/D conversion section for digital calculation by a microcomputer. The CPU performs effective value calculation, demand calculation, electric power calculation, electric energy accumulation and harmonic calculation, etc.
The items to be measured are load current, line voltage, electric power, electric energy and harmonic current (3rd, 5th, 7th and ALL). It allows easy confirmation of electric circuit conditions and precise and efficient

Fig. 7.23 MDU Block Diagram
energy management.Table 7.6 shows all the items. Sampling for measurement of voltage, electric current and electric power takes place once every several seconds, and the measured values are subject to calculation of the measurement values, such as the present values and average value, etc. Since the average value and electric energy are calculated from the sampling value measured once every several seconds, care should be taken when there is a breaking load such as a resistance welder. Electric energy cannot be used to provide data for contracts or verification.

(b) Measurement precision

The precision (allowance) of a measurement unit means the rate of errors against measurement range expressed as a percentage. The precision of electric current and voltage, etc. for MDU is equivalent to JISC1111 and it is the rate of errors against the rated current and voltage of measurement expressed as a percentage. Also, the precision of the electric power and electric energy is shown as a rate of errors against the rated current and voltage of measurement.

Table 7.6 Measurement Item List

Applicable models Item		$\begin{aligned} & \text { NF400-SEP } \\ & \text { NF400-HEP } \end{aligned}$	NF400-SEP NF400-HEP Power provided	$\begin{aligned} & \text { NF600-SEP } \\ & \text { NF600-HEP } \end{aligned}$	$\begin{aligned} & \text { NF800-SEP } \\ & \text { NF800-HEP } \end{aligned}$
	Load current of each phase, precision $\pm 2.5 \%{ }^{* 1}$ Present value, average value, maximum average value	-	-	-	-
	Line voltage, precision $\pm 2.5 \%{ }^{* 1}$ Present value, average value, maximum average value	-	-	-	\bullet
	Harmonic load current 3rd, 5th, 7th and ALL Precision $\pm 2.5 \%^{* 1}$ Present value, maximum value, average value, maximum average value	-	\bullet	\bullet	\bullet
	Electric power, precision $\pm 2.5 \%{ }^{* 1}$ Present value, average value, maximum average value	-	\bullet	\bullet	-
	Electric energy accumulated, precision $\pm 2.5 \% * 2$	-	\bullet	\bullet	\bullet
	Fault event current/fault event cause	-	-	-	-
	Measuring rated current	400A	400A	600A	800A
	Measuring rated voltage	440 V	440 V	440 V	440 V
	Maximum measuring current	800A	800A	1200A	1600A
	Maximum measuring voltage	690 V	690 V	690 V	690 V
Alarm(LED Indication)		PAL OVER			
B/NET transmission(option)		Load curren power, elec event curre Alarm PAL	nt of each ph tric energy,AL nt/fault event	hase, line volta LL harmonic cause	age, electric current,fault
Electric energy accumulated pulse output(option)		Solid straig DC24V/AC Pulse range Pulse unit	$\begin{aligned} & \text { ght relay no vo } \\ & 100 \cdot 200 \mathrm{~V} 20 \\ & \mathrm{e} 0.35 \text { to } 0.45 \\ & 1,10,100,1000 \end{aligned}$	$\begin{aligned} & \text { Oltage contact } \\ & 0 \mathrm{~mA} \\ & \text { sec } \\ & 0,10000, \mathrm{kWh} \end{aligned}$	a =/Pulse
Control power		AC100-240	V 50/60Hz DC	C100V 200V	12VA

*1 Confomts to JISC1111.
*2 It is not a power average/supply value obtained by Measurement Method.
*3 B/NET transmission and electric energy accumulated pulse output cannot be mounted simultaneously.
(c) External appearance and mounting of MDU

An example of the external appearance of MDU is shown in Fig. 7.24 and Fig. 7.25 showing the mounting structure.

Fig. 7.24 Example of the NF600-SEP 3P MDU Display

Fig. 7.25 Mounting

An average value is a value close to an average within the demand time limits. Also, demand time limit (t0) means a period until measuring display value (10) indicates 95% of input (I) when a certain input (I) is continuously turned on. It takes about three times as long as the time limit (t0) until it indicates 100% of input (I) (Fig. 7.26).

Fig.7.26 Demand Characteristics

7.8.2 Maintenance function

In the fault event of a circuit breaker trip, the MDU breaker measures the fault event cause and the fault event current that is load current, and records them in a non-volatile memory device in order to identify the cause of the fault event and make a prompt recovery. Also, since it records the maximum values of demand current and hourly electric energy, etc. in a non-volatile memory device, it is useful for understanding the condition of power consumption. The fault event cause indicates either an overload or a short circuit.

7.8.3 Alarm output function

A circuit breaker monitors various alarm outputs and turns on an alarm LED. The alarms are the PAL, the load current pre-alarm and OVER, the overload alarm.

7.8.4 Transmission function

The measured data is transmitted through B/NET, MITSUBISHI distribution control network (option). It can obtain the unit management data for energy saving and automatically collect the electric equipment operation data for preventive maintenance. Furthermore, electric energy accumulated can output as a pulse output (option). It enables the direct input into a sequencer realizing labor saving of power consumption control by the sequencer.

Withstand Voltage and Insulation Resistance Tests

As VT is connected between the poles on the load side of a circuit breaker, voltage resistance tests between the electrodes on the load side cannot be conducted (shown as in Table 7.7.) Although an insulation resistance test at DC500V does not result in damage to the circuit breaker, the insulation resistance value measured by the test will be low (shown as \triangle.) There is no problem regarding the voltage and insulation resistance tests between the circuit breaker main circuit and earth.

Table 7.7 Places for Withstand Voltage and Insulation Resistance Tests

Measured Point/test			Insulation resistance measurement		Withstand voltage test	
State of handle			ON	OFF	ON	OFF
Between line part and earth			\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\bar{y}} \end{aligned}$	Between left and middle poles	\triangle	\bigcirc		\bigcirc
		Between middle and right poles	\triangle	\bigcirc		\bigcirc
		Between left and right poles	\triangle	\bigcirc		\bigcirc
		Between middle and neutral poles	\triangle	\bigcirc		\bigcirc
	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	Between left and middle poles	\triangle	\triangle		
		Between middle and right poles	\triangle	\triangle		
		Between left and right poles	\triangle	\triangle		
		Between middle and neutral poles	\triangle	\triangle		
Between line and load side terminal			-	\bigcirc	-	\bigcirc

7.9 Selection of MCCBs in inverter circuit

7.9.1 Cause of distorted-wave current

Distorted-wave current is caused by factors such as the CVCF device of a computer power unit, various rectifiers, induction motor control VVVF device corresponding to more recent energy-saving techniques, etc, wherein thyristor and transistor are used. Any of these devices generates DC power utilizing the switching function of a semiconductor and, in addition, transforms the generated DC power into intended AC power. Generally, a large capacity capacitor is connected on its downstream side from the rectification circuit for smoothing the rectification, so that the charged current for the capacitor flows in pulse form into the power circuit. Because voltage is chopped at high frequency in AC to DC transforming process, load current to which high frequency current was superimposed by chopping basic frequency flows into the load line. This paragraph describes the VVVF inverter, of these devices, which will develop further as main control methods for induction motors currently in broad use in various fields. Fig. 7.27 illustrates an example of MCCBs application to inverter circuit. Two control methods of PAM (Pulse Amplitude Modulation) and PWM (Pulse Wide Modulation) are available for the VVVF inverter and generating higher harmonic wave components differs depending on the difference between the control methods. As seen from Tables 7.9 and 7.10, this harmonic wave component of input current can be made smaller (improved) by inputting DC reactor (DCL) or AC reactor (ACL). Further, in the case of the output current waveform in Fig. 7.29, the PWM generates higher harmonic wave components than that of the PAM.

Fig.7.27 Example of MCCBs Application to Inverter Circuit

7.9.2 Selection of MCCBs

MCCBs characteristic variations and temperature rises dependent on distortion of the current wave must be considered when selecting MCCBs for application to an inverter circuit (power circuit). The relation of rated current INFB to load current I of MCCBs is selected as follows from the MCCBs tripping system.
$I_{\text {NFB }} \geq \mathrm{Kx}$ I
Thermal acting solenoid type (bimetal system) and electronic type (real value detection) are both real current detection systems which enable exact overload protection even under distorted-wave current. Due to the above explanation, it is advantageous to select real current detection type MCCBs.

Table 7.8 Reduction Rate

MCCBs tripping system	Reduction rate K
Thermalacting solenoid type (bimetal system)	1.4
(Note 2) Thermal acting solenoid type (CT system)	2
(Note 1) Perfect solenoid type	1.4
Electronic type (Real value detection)	1.4
(Note 3) Electronic type (Peak value detection)	2

This table is subject to the current which meets the following requirements.

[^4](3) Higher harmonic wave components are mainly No. 7 or a lower harmonic wave.

Notes: 1. The characteristics of perfect solenoid type MCCBs vary significantly depending on wave distortion. Therefore, use of thermal acting solenoid type MCCBs is recommended.
2. NF2000-S, NF2500-S, NF3200-S, NF4000-S
3. NFE2000-S, NFE3000-S, NFE4000-S

Table 7.9 Data of High Harmonic Wave Current Content in Inverter Power Circuit (Example)

High harmonic wave degree	High harmonic wave current content (\%)			
	P W M		P A M	
	No ACL (Standard)	With power factor modifying ACL	With standard ACL	With power factor modifying ACL
Basic	81.6	97.0	83.6	97.2
2	-	-	-	-
3	3.7	-	2.5	-
4	-	-	-	-
5	49.6	21.9	48.3	21.7
6	-	-	-	-
7	27.4	7.1	23.7	7.0
8	-	-	-	-
9	-	-	-	-
10	-	-	-	-
11	7.6	3.9	6.2	3.7
12	-	-	-	-
13	6.7	2.8	4.7	2.6

Note: No DCL Output frequency 60 Hz , subject to 100% load

Table 7.10 Peak Factor of Inverter Input Current

Power factor $=(D C$ voltage $\times D C) /(\sqrt{3} \times A C$ effective voltage $\times A C$ effective current $)$
Waveform factor $=($ Effective value) $/($ Mean value $)$
Peak factor $=($ Max value $) /($ Effective value $)$

(a) PAM system
(b) Equal-value PWM system

Fig.7.28 Inverter Input Current
Fig.7.29 Inverter Output Current

8. ENVIRONMENTAL CHARACTERISTICS

8.1 Atmospheric Environment

Abnormal environments may adversely affect performance, service life, insulation and other aspects of MCCB quality. Where service conditions differ substantially from the specified range as below, derating of performance levels may result.

1. Ambient temperature range $-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ (Average temperature for 24 hours, however, shall not be higher than $35^{\circ} \mathrm{C}$.)
2. Relative humidity
3. Altitude
4. Ambient 85\% max. with no dewing 2,000m max.
No excessive water or oil vapour, smoke, dust, salt content, corrosive substance, vibration, and impact
Expected service life (MTTF) under the above conditions is 15 years.

8.1.1 High Temperature Application

To comply with relevant standards, all circuit breakers are calibrated at $40^{\circ} \mathrm{C}$. If the circuit breaker is to be used in an environment where the ambient temperature is likely to exceed $40^{\circ} \mathrm{C}$ please apply the derating factor shown in table 8.2.
For example: To select a circuit breaker for use on a system where the full load current is 70A in an ambient temperature at $50^{\circ} \mathrm{C}$ then from table 8.2

$$
\frac{70 \mathrm{~A}}{0.9}=77.8 \mathrm{~A}
$$

Select a circuit breaker with a trip unit adjustable from 80-100A or fixed at 100A.

Table 8.2 MCCB Derating

Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Derating factor
50	0.9
55	0.8
60	0.7

Table 8.1 Abnormal Environments, and Countermeasures

Environment	Trouble	Countermeasures
High temperature	1. Nuisance tripping 2. Insulation deterioration	1. Reduce load current (derate). 2. Avoid ambients above $60^{\circ} \mathrm{C}$.
Low temperature	1. Condensation and freezing 2. Low-temperature fragility in shipping (around $-40^{\circ} \mathrm{C}$)	1. Install heater for defrosting and drying. 2. Ship tripped, or if not possible, OFF.
High humidity	1. Insulation resistance loss 2. Corrosion	1. Use MCCB enclosure such as Type W. 2. Inspect frequently, or install high-corrosion-resistant MCCBs.
High altitude	1. Reduced temperature, otherwise no problem up to $2,000 \mathrm{~m}$	1. See "Low temperature", above.
Dirt and dust	1. Contact discontinuity 2. Impaired mechanism movement 3. Insulation resistance loss	1. Use Type I MCCB enclosure.
Corrosive gas, salt air	1. Corrosion	1. Use Type W MCCB enclosure or install high-corrosion-resistant MCCBs.

8.1.2 Low Temperature Application

In conditions where temperatures reach as low as $-5^{\circ} \mathrm{C}$ special MCCBs are usually required. Mitsubishi, however, have tested their standard MCCBs to temperatures as low as $-10^{\circ} \mathrm{C}$ without any detrimental effects.

For conditions where temperatures drop below $-10^{\circ} \mathrm{C}$ special MCCBs must be used.

If standard MCCBs experience a sudden change from high temperature, high humidity conditions to low temperature conditions, there is a possibility of ice forming inside the mechanism. In such conditions we recommend that some form of heating be made available to prevent mal-operation.

In conditions of low temperature MCCBs should be stored in either the tripped or OFF position.

Low Temperature MCCBs

Special low temperature MCCBs are available that can withstand conditions where temperatures fall to as low as $-40^{\circ} \mathrm{C}$. These special MCCBs are available in sizes up to 1200A in the standard series and above 50A in the compact series.

8.1.3 High Humidity

In conditions of high humidity the insulation resistance to earth will be reduced as will the electrical life.

For applications where the relative humidity exceeds 85% the MCCB must be specially prepared or special enclosures used. Special preparation includes plating all metal parts to avoid corrosion and special painting of insulating parts to avoid the build up of mildew.

There are two degrees of tropicalisation:
Treatment 1- painting of insulating material to avoid build up of mildew plus special plating of metal parts to avoid corrosion.
Treatment 2- painting of insulating material to avoid build up of mildew only.

8.1.4 Corrosive Atmospheres

In the environment containing much corrosive gas, it is advisable to use MCCB of added corrosion resistive specifications.

For the breakers of added corrosionproof type, corrosion-proof plating is applied to the metal parts.

Where concentration of corrosive gas exceeds the level stated below, it is necessary to use MCCB of added corrosion resistive type being enclosed in a water-proof type enclosure or in any enclosure of protective structure.
Allowable containment for corrosive gas.
$\mathrm{H}_{2} \mathrm{~S}$ 0.01ppm $\mathrm{SO}_{2} \quad 0.05 \mathrm{ppm}$
NH_{3} 1ppm

8.1.5 Affecting of Altitude

When MCCBs are used at altitudes exceeding 2000m above sea level, the effects of a drop in pressure and drop in temperature will affect the operating performance of the MCCBs. At an altitude of 2200 m , the air pressure will drop to 80% and it drops to 50% at

5500 m , however interrupting capacity is unaffected The derating factors that are applicable for high altitude applications are shown in table 8.3. (According to ANSI C 37.29-1970)

Table 8.3 Derating Factors for High Altitude Applications

Altitude	Rated current	Rated voltage
3000 m	0.98	0.91
4000 m	0.96	0.82
5000 m	0.94	0.73
6000 m	0.92	0.65

For example: NF800-SEP on 4000 m

1. Voltage

The rated operating voltage is AC690V. You should derate by $690 \times 0.82=565.8 \mathrm{~V}$. It means that you can use this NF800-SEP up to AC565.8V rated voltage.
2. Current

The rated current is 800 A . You should derate by $800 \times 0.96=768 \mathrm{~A}$. It means that you can use this NF800-SEP up to 768A rated current.

8.2 Vibration-Withstand Characteristics

8.2.1 The Condition of Test

1. Installation position and Direction of vibration

- Every vertical and horizontal at vertical installed (as shown in Fig. 8.1)

2. The position of MCCBs and vibration time

Forty minutes in each position (ON, OFF and TRIP)
3. Vibration criteria

- Frequency $5 \sim 100 \mathrm{~Hz}$
- Vibration acceleration 2.2 g
- Period 10min./cycle

8.2.2 The Result of Test

The samples must show no damage and no change of operating characteristic (200% release), and must not be tripped or switched off by the vibration.

Fig. 8.1 Applied Vibration

8.3 Shock-Withstand Characteristics

8.3.1 The Condition of Test

1. MCCBs are drop-tested, as described in Fig. 8.2. The arrows show the drop direction.
2. The samples are set to ON , with no current flowing.

8.3.2 The Result of Test (as Shown in Table 8.4)

The samples must show no physical damage, and the switched condition must not be changed by the drop in any of the drop-attitudes tested.

The judgment of failure:

Fig. 8.2 Drop-Test Attitudes

- A case the switched condition changed from ON to OFF
- A case the switched condition changed from ON to Trip
- A case the sample shows physical damage

Table 8.4 Shock-Withstand Characteristics of Mitsubishi MCCB

Series		Type	No tripped (G)	No damage (G)
BH		BH-K BH-P, BH-S, BH-PS, BH-D	15	50
MB		MB30-CS	15	
		MB30-SP MB50-CP MB50-SP MB100-SP MB225-SP	20	
NF	S	NF30-SP NF50-HP NF50-HRP NF60-HP NF100-SP NF100-SEP NF100-HP NF100-HEP NF160-SP NF160-HP NF250-SP NF250-SEP NF250-HP NF250-HEP NF400-SP NF400-SEP NF400-HEP NF400-REP NF630-SP NF630-SEP NF630-HEP NF630-REP NF800-SDP NF800-SEP NF800-HEP NF800-REP NF1000-SS NF1250-SS NF1600-SS NF2000-S NF2500-S NF3200-S NF4000-S NFE2000-S NFE3000-S NFE4000-S	20	
	C	NF30-CS	15	
		NF50-CP NF60-CP	20	
		NF100-CP NF250-CP NF400-CP NF630-CP NF800-CEP	20	
	U	NF100-UP NF100-RP NF225-UP NF225-RP NF400-UEP NF630-UEP NF800-UEP NF1250-UR	20	

[^5]
9. SHORT-CIRCUIT CURRENT CALCULATIONS

9.1 Purpose

Japanese and international standards require, in summary, that an overcurrent protector must be capable of interrupting the short-circuit current that may flow at the location of the protector. Thus it is necessary to establish practical methods for calculating short-circuit currents for various circuit configurations in lowvoltage systems.

9.2 Definitions

1. \% Impedance

The voltage drop resulting from the reference current, as a percentage of the reference voltage (used for short-circuit current calculations by the \% impedance method).
$\%$ impedance $=\frac{\text { voltage drop at capacity load }}{\text { reference voltage }} \times 100(\%)$
(Reference voltage: 3-phase - phase voltage)
2. Reference Capacity

The capacity determined from the rated current and voltage used for computing the \% impedance (normally 1000 kVA is used).
3. Per-Unit Impedance

The \% impedance expressed as a decimal (used for short-circuit current calculations by the per-unit method).
4. Power Supply Short-Circuit Capacity

3-phase supply (MVA) $=\sqrt{3} \times$ rated voltage $(k V) \times$ short circuit current (kA)
5. Power Supply Impedance

Impedance computed from the short-circuit capacity of the supply (normally indicated by the electric power company; if not known, it is defined, together with the X / R ratio, as 1000 MVA and $\mathrm{X} / \mathrm{R}=25$ for a 3-phase supply (from NEMA.AB1).

6. Motor contribution Current

While a motor is rotating it acts as generator; in the event of a short circuit it contributes to increase the total short-circuit current. (Motor current contribution must be included when measuring 3-phase circuit short-circuit current).
7. Motor Impedance

The internal impedance of a contributing motor. (A contributing motor equal to the capacity of the transformer is assumed to be in the same position as the transformer, and its \% impedance and X / R value are assumed as 25% and 6 (from NEMA.AB1).
8. Power Supply Overall Impedance

The impedance vector sum of the supply $\left(Z_{L}\right)$, the transformer $\left(\mathrm{Z}_{\mathrm{T}}\right)$ and the motor $\left(\mathrm{Z}_{\mathrm{M}}\right)$.
Overall impedance of 3-phase supply

$$
\left(Z_{s}\right)=\frac{\left(Z_{L}+Z_{T}\right) \cdot Z_{M}}{Z_{L}+Z_{T}+Z_{M}}(\% \Omega)
$$

9. Short-Circuit Current Measurement Locations

In determining the interruption capacity required of
the MCCB, generally, the short-circuit current is calculated from the impedance on the supply side of the breaker.
Fig. 9.1 represents a summary of Japanese standards.

9.3 Impedances and Equivalent Circuits of Circuit Components

In computing low-voltage short-circuit current, all impedances from the generator (motor) to the short-circuit point must be included; also, the current contributed by the motor operating as a load. The method is outlined below.

9.3.1 Impedances

1. Power Supply Impedance (Z_{L})

The impedance from the power supply to the trans-former-primary terminals can be calculated from the short-circuit capacity specified by the power company, if known.
Otherwise it should be defined, together with X / R, as 1000MVA and $X / R=25$ for a 3-phase supply. Note that it can be ignored completely if significantly smaller than the remaining circuit impedance.
2. Transformer Impedance $\left(Z_{T}\right)$

Together with the line impedance, this is the largest factor in determining the short-circuit current magnitude. Transformer impedance is designated as a percentage for the transformer capacity; thus it must be converted into a reference-capacity value (or if using Ohm's law, into an ohmic value).
Tables 9.1 show typical impedance values for transformers, which can be used when the transformer impedance is not known.
3. Motor Contribution Current and Impedance (Z_{M}) The additional current contributed by one or more motors must be included, in considering the total 3phase short-circuit current. Motor impedance depends on the type and capacity, etc.; however, for typical induction motors, \% impedance can be taken as 25\% and X / R as 6 . The short-circuit current will thus increase according to the motor capacity, and the impedance up to the short-circuit point. The following assumptions can normally be made.
a. The total current contribution can be considered as a single motor, positioned at the transformer location.
b. The total input (VA) of motor contribution can be considered as equal to the capacity of the transformer (even though in practice it is usually larger). Also, both the power factor and efficiency can be assumed to be 0.9 ; thus the resultant motor contribution output is approximately 80% of the transformer capacity.
c. The \% impedance of the single motor can be considered as 25% and the X / R as 6.

Fig. 9.1 Short-Circuit Locations for Current Calculations
4. Line and Bus-Duct Impedance (Z_{W}, Z_{B})

Table 9.2 gives unit impedances for various configurations of wiring, and Table 9.3 gives values for ducting.
Since the tables give ohmic values, they must be converted, if the \%-impedance method is employed.

Table 9.1 Impedances of 3-Phase Transformers

Transformer capacity (kVA)	Impedance (\%)	
	\%R	\%X
50	1.81	1.31
75	1.78	1.73
100	1.73	1.74
150	1.61	1.91
200	1.63	2.60
300	1.50	2.82
500	1.25	4.06
750	1.31	4.92
1000	1.17	4.94
1500	1.23	5.41
2000	1.13	5.89

5. Other Impedances

Other impedances in the path to the short-circuit point include such items as CTs, MCCBs, control devices, and so on. Where known, these are taken into consideration, but generally they are small enough to be ignored.

Table 9.2 Wiring Impedance

Cable size (mm^{2})	Resistance ($\mathrm{m} \Omega / \mathrm{m}$)	Reactance(mW/m)					
		50 Hz			60 Hz		
		$\begin{gathered} \text { 2-or 3-core } \\ \text { cables } \end{gathered}$	1-core cables (close-spaced)	1-core cables (6cm-spaced)	$\begin{aligned} & \text { 2-or 3-core } \\ & \text { cables } \end{aligned}$	1-core cables (close-spaced)	1-core cables (6cm-spaced)
1.5	12.10	0.1076	0.1576	0.2963	0.1292	0.1891	0.3555
2.5	7.41	0.1032	0.1496	0.2803	0.1238	0.1796	0.3363
4.0	4.61	0.0992	0.1390	0.2656	0.1191	0.1668	0.3187
6.0	3.08	0.0935	0.1299	0.2527	0.1122	0.1559	0.3033
10.0	1.83	0.0873	0.1211	0.2369	0.1048	0.1453	0.2843
16.0	1.15	0.0799	0.1043	0.2138	0.0959	0.1251	0.2565
25.0	0.727	0.0793	0.1014	0.2000	0.0952	0.1217	0.2400
35.0	0.524	0.0762	0.0964	0.1879	0.0915	0.1157	0.2254
50.0	0.387	0.0760	0.0924	0.1774	0.0912	0.1109	0.2129
70.0	0.268	0.0737	0.0893	0.1669	0.0884	0.1072	0.2001
95.0	0.193	0.0735	0.0867	0.1573	0.0882	0.1040	0.1888
120.0	0.153	0.0720	0.0838	0.1498	0.0864	0.1006	0.1798
150.0	0.124	0.0721	0.0797	0.1427	0.0865	0.0956	0.1712
185.0	0.0991	0.0720	0.0806	0.1356	0.0864	0.0967	0.1627
240.0	0.0754	0.0716	0.0818	0.1275	0.0859	0.0982	0.1530
300.0	0.0601	0.0712	0.0790	0.1195	0.0854	0.0948	0.1434
400.0	0.0470		0.0777	0.1116	-	0.0932	0.1339
500.0	0.0366	-	0.0702	0.1043	-	0.0843	0.1252
630.0	0.0283	-	0.0691	0.0964	-	0.0829	0.1157

Notes: 1. Resistance values per IEC 228
2. Reactance per the equation: $L(\mathrm{mH} / \mathrm{km})=0.05+0.4605 \log _{10} \mathrm{D} / \mathrm{r}(\mathrm{D}=$ core separation, $\mathrm{r}=$ conductor radius $)$
3. Close-spaced reactance values are used.

Table 9.3 Bus-Duct Impedance

Rated current (A)	Resistance $(\mathrm{m} \Omega / \mathrm{m})$ at $20^{\circ} \mathrm{C}$	Reactance $(\mathrm{m} \Omega / \mathrm{m})$	
		0.0250	60 Hz
600	0.114	0.0231	0.0300
800	0.0839	0.0179	0.0278
1000	0.0637	0.0139	0.0167
1200	0.0397	0.0191	0.0230
1500	0.0328	0.0158	0.0190
2000	0.0244	0.0118	0.0141
2500	0.0192	0.0092	0.0110
3000	0.0162	0.0077	0.0092

9.3.2 Equivalent Circuits

1. Three-Phase

Based on the foregoing assumptions for motors, the equivalent circuits of Fig. 9.2 can be used for calculating 3 -phase short-circuit current. The motor impedance $\left(Z_{M}\right)$ can be considered as shunting the series string consisting of the supply (Z_{L}) and transformer $\left(Z_{T}\right)$ impedances, by busbars of infinite short-circuit capacity. When the three impedances are summed, the total impedance and the resistive and reactive components are given as:
$Z_{S}=\frac{\left(Z_{L}+Z_{T}\right) \cdot Z_{M}}{Z_{L}+Z_{T}+Z_{M}}=R_{S}+j X_{S}$
$R_{S}=\frac{\left[\begin{array}{l}\left(R_{L}+R_{T}+R_{M}\right)\left\{R_{M}\left(R_{L}+R_{T}\right)-X_{M}\left(X_{L}+X_{T}\right)\right\} \\ +\left(X_{L}+X_{T}+X_{M}\right)\left\{X_{M}\left(R_{L}+R_{T}\right)+R_{M}\left(X_{L}+X_{T}\right)\right\}\end{array}\right]}{\left(R_{L}+R_{T}+R_{M}\right)^{2}+\left(X_{L}+X_{T}+X_{M}\right)^{2}}$
$X_{S}=\frac{\left[\begin{array}{l}\left(R_{L}+R_{T}+R_{M}\right)\left\{X_{M}\left(R_{L}+R_{T}\right)+R_{M}\left(X_{L}+X_{T}\right)\right\} \\ -\left(X_{L}+X_{T}+X_{M}\right)\left\{R_{M}\left(R_{L}+R_{T}\right)-X_{M}\left(X_{L}+X_{T}\right)\right\}\end{array}\right]}{\left(R_{L}+R_{T}+R_{M}\right)^{2}+\left(X_{L}+X_{T}+X_{M}\right)^{2}}$

Thus, when calculating the short-circuit current at various points in a load system, if the value Z_{S} is first computed, it is a simple matter to add the various wire or bus-duct impedances. Table 9.4 gives values of total supply impedance $\left(Z_{S}\right)$, using transformer impedance per Table 9.1, power-supply short-circuit capacity of 1000 MVA , and X/R of 25.

Fig. 9.2 3-Phase Equivalent Circuits
Table 9.4 Total Impedances for 3-Phase Power Supplies

Transformer capacity (kA)	Impedance based on 1000kVA(\%)	Ohmic value ($\mathrm{m} \Omega$)	
		230 V	440 V
50	$33.182+\mathrm{j} 26.482$	$17.553+\mathrm{j} 14.009$	$64.240+\mathrm{j} 51.269$
75	$21.229+\mathrm{j} 22.583$	$11.230+j 11.946$	$41.099+j 43.720$
100	$15.473+\mathrm{j} 17.109$	$8.185+\mathrm{j} 9.051$	$29.956+\mathrm{j} 33.123$
150	$9.56+\mathrm{j} 12.389$	$5.057+$ j 6.554	$18.508+\mathrm{j} 23.985$
200	$6.977+\mathrm{j} 12.15$	$3.691+\mathrm{j} 6.427$	$13.507+\mathrm{j} 23.522$
300	$4.306+\mathrm{j} 8.795$	$2.278+\mathrm{j} 4.653$	$8.336+\mathrm{j} 17.027$
500	$2.089+\mathrm{j} 7.27$	$1.105+\mathrm{j} 3.846$	$4.044+\mathrm{j} 14.074$
750	$1.427+\mathrm{j} 5.736$	$0.755+\mathrm{j} 3.034$	$2.763+\mathrm{j} 11.104$
1000	$0.969+\mathrm{j} 4.336$	$0.513+\mathrm{j} 2.294$	$1.876+\mathrm{j} 8.394$
1500	$0.671+\mathrm{j} 3.142$	$0.355+\mathrm{j} 1.662$	$1.299+\mathrm{j} 6.083$
2000	0.467 +j 2.544	0.247 +j 1.346	$0.904+\mathrm{j} 4.925$

Notes: 1. Total power-supply impedance $Z_{S}=\frac{\left(Z_{L}+Z_{T}\right) Z_{M}}{Z_{L}+Z_{T}+Z_{M}}$
2. For line voltages (E^{\prime}) other than 200 V , multiply the ohmic value by $\left(\frac{E^{\prime}}{200}\right)^{2}$

9.4 Classification of Short-Circuit Current

A DC current (Fig. 9.3) of magnitude determined by the voltage phase angle at the instant of short circuit and-the circuit power factor will be superimposed on the AC short-circuit current.

This DC component will rapidly decay; however, where a high-speed circuit-interruption device such as an MCCB or fuse is employed, the DC component must be considered. Further, the mechanical stress of the electric circuit will be affected by the maximum instantaneous short-circuit current; hence, the shortcircuit current is divided, as below.

1. RMS Symmetrical Short-Circuit Current (I_{s})

This is the value exclusive of the DC component; it is $\mathrm{A}_{\mathrm{s}} / \sqrt{2}$ of Fig. 9.3.
2. RMS Asymmetrical Short-Circuit Current (I_{as})

This value includes the DC component. It is defined as:
$\mathrm{I}_{\text {as }}=\sqrt{\left(\frac{\mathrm{A}_{s}}{\sqrt{2}}\right)^{2}+\mathrm{A}_{\mathrm{d}}{ }^{2}}$
Accordingly, when the DC component becomes maximum (i.e., $\theta-\varphi= \pm \frac{\pi}{2}$, where the voltage phase angle at short circuit is θ, and the circuit power factor is $\cos \varphi$), $\mathrm{I}_{\text {as }}$ will also become maximum $\frac{1}{2}$ cycle after the short circuit occurs, as follows:
$\mathrm{I}_{\mathrm{as}}=\mathrm{I}_{\mathrm{s}} \cdot \sqrt{1+2 \mathrm{e}^{-\frac{2 \pi \mathrm{R}}{x}}}=\mathrm{I}_{\mathrm{s}} \cdot \mathrm{K}_{1}$, that is: $\mathrm{K}_{1}=\sqrt{1+2 \mathrm{e}^{-\frac{2 \pi \mathrm{R}}{x}}}$ where K_{1} is the single-phase maximum asymmetrical coefficient, and $\mathrm{I}_{\text {as }}$ can be calculated from the asymmetrical value and the circuit power factor. In a 3phase circuit, since the voltage phase angle at switchon differs between phases, I_{as} will do the same. If the average of these values is taken $\frac{1}{2}$ cycle later, to give the 3 -phase average asymmetrical short-circuit current, the following relationship is obtained:
$I_{a s}=I_{s} \cdot \frac{1}{3}\left\{\sqrt{1+2 e^{-\frac{2 \pi R}{x}}}+2 \sqrt{1+\frac{1}{2} e^{-\frac{2 \pi R}{x}}}\right\}=I_{s} \cdot K_{3}$ that is: $K_{3}=\frac{1}{3}\left\{\sqrt{1+2 e^{-\frac{2 \pi R}{x}}}+2 \sqrt{1+\frac{1}{2} e^{-\frac{2 \pi R}{x}}}\right\}$
K_{3} is the asymmetrical coefficient, derived from the symmetrical value and the circuit power factor.
3. Peak Value of Asymmetrical Short-Circuit Current This value (I_{p} in Fig. 9.3) depends upon the phase angle at short circuit closing and on the circuit power factor; it is maximum when $\theta=0$. It will reach peak value in each case, $\omega_{t} \risingdotseq \frac{\pi}{2}+\varphi$ after the short circuit occurrence. It can be computed as before, by means of the circuit power factor and the symmetrical shortcircuit current.
$I_{p}=I_{s}\left[1+\sin \varphi \cdot e^{-\left(\frac{\pi}{2}+\varphi\right) \cdot \frac{R}{x}}\right]=I_{S} \cdot K_{p}$
thus: $K_{p}=\sqrt{2}\left[1+\sin \varphi \cdot e^{-\left(\frac{\pi}{2}+\varphi\right) \cdot \frac{R}{x}}\right]$
K_{p}, the peak asymmetrical short-circuit current coefficient, is also known as the closing-capacity coefficient, since I_{p} is called the closing capacity. Thus, in each case, the asymmetrical coefficients can be derived from the symmetrical values and the circuit power factor. These coefficients are shown Fig. 9.4.

Fig. 9.3 Short-Circuit Current

Fig. 9.4 Short-Circuit Current Coefficients

9.5 Calculation Procedures

Table 9.5 Necessary Equations

	Ohmic method	\% impedance method	Remarks
	$\mathrm{I}_{\mathrm{S}}=\frac{\mathrm{V}}{\mathrm{MB} \cdot \mathrm{Z}} \ldots . . \mathrm{Eq} .1$	$\begin{align*} & I_{S}=\frac{P}{M B \cdot V \cdot \% Z} \times 100 \ldots E q . ~ \\ & 2 \tag{Eq. 3}\\ &=\frac{I_{B}}{\% Z} \times 100 \ldots \ldots . ~ \end{align*}$	$\begin{aligned} & \% Z=\frac{I_{B} \cdot Z}{V / M B} \times 100 \ldots \ldots E q . ~ \\ & \hline \end{aligned}$ - Eq. 2 is derived from Eqs. 1, 1' and 2'. - Eq. 3 is derived from Eqs. 1 and 1'. - Because Eq. 1 can be obtained from Eqs. 2 and 12, it can be seen that I_{s} of the \% impedance method is not affected by the selection of the reference capacity. - The single-phase short-circuit current in a 3-phase circuit is $M 3 / 2$ times the 3phase short-circuit current. Consequently, a 3-phase circuit can be examined via the 3 -phase short-circuit current.
$\begin{gathered} 0 \\ 0 \\ \tilde{\sim} \\ \frac{0}{O} \\ \text { ले } \end{gathered}$		ent (A, sym) ase component) ent (A, asym.) hase component, VA) (single-phase component, \%) efficient $\left.2 \sqrt{1+\frac{1}{2} e^{-\frac{2 \pi R}{x}}}\right\}$	
	- Conversion from percentage value to ohmic value $\mathrm{Z}=\frac{\mathrm{V}^{2}}{\mathrm{P}} \cdot \% \mathrm{Z} \times 10^{-2} \Omega$ Where P is the capacity at which \%Z was derived. - Power supply impedance seen from primary side $\mathrm{Z}=\frac{\left(\text { primary voltages)}{ }^{2}\right.}{\text { short-circuit capacity }}$ - Supply impedance seen from secondary side $\left.\left.\begin{array}{c} \text { primary-side } \tag{Eq. 14}\\ \mathrm{Z}= \\ \text { power supply } \times\left(\frac{\text { secondary voltages }}{\text { impedance }}\right. \end{array}\right)^{2} \text { primary voltage }\right)^{2}$ \qquad	- Conversion from ohmic value to percentage value $\% Z=\frac{P}{V^{2}} \cdot Z \times 100 \%$ - Conversion to \%Z at reference capacity Power-supply impedance: $\% Z=\frac{\text { reference capacity }}{\text { short-circuit capacity }} \times 100 \ldots . . . \text { Eq. } 13$ Transformer impedance, motor impedance: $\% Z=\frac{\text { reference capacity }}{\text { equipment capacity }} \times \begin{aligned} & \% Z \text { at equip- } \\ & \text { ment capacity } \end{aligned}$	- Eqs. 9 and 12 are derived from Eqs. 1' and 2', and Eqs. 3 ' and 4'. - As the supply impedance is defined as 100% at short circuit capacity, for Eq. 13 conversion to reference capacity is made. - When the supply short-circuit capacity is unknown, the impedance is taken as $0.0040+j 0.0999$ (\%) for 3-phase supply, and $0.0080+j 0.1998$ (\%) for a 1 phase supply (see Table 9.6). - The motor and transformer impedances are converted from \%Z at their equipment capacities into \%Z at reference capacity, using Eq. 14. - Eq. 14 for motor impedance becomes $(4.11+\mathrm{j} 24.66) \times \frac{\text { reference capacity }}{\text { equipment capacity }}$ (For details see Table 9.6.)

9.5.1 Computation Methods

Regardless of method, the aim is to obtain the total impedance to the short-circuit point. One of two common methods is used, depending upon whether a percentage or ohmic value is required.

1. Percentage Impedance Method

This method is convenient in that the total can be derived by simply adding the individual impedances, without the necessity of conversion when a voltage transformer is used.
Since impedance is not an absolute value, being based on reference capacity, the reference value must first be determined. The reference capacity is normally taken as 1000 kVA ; thus, the percentage impedance at the transformer capacity, the percentage impedance derived from the power supply short-circuit capacity, and also the motor impedance must be converted into values based on 1000kVA (Eqs. 13 and 14). Also, the wiring and bus-duct impedances that are given in ohmic values must be converted into percentage impedances (Eq. 12).
2. Ohmic Method

In calculating short-circuit currents for a number of points in a system, since the wire and bus-duct im-
pedances will be different in each case, it is convenient to use Ohm's law, in that if, for example, the total supply impedance $\left(Z_{s}\right)$ is derived as an ohmic value, the total impedance up to the short-circuit point can be obtained by simply adding this value to the wire and bus-duct impedances, which are in series with the supply. For total 3 -phase supply impedance $\left(Z_{\mathrm{s}}\right)$, refer to Table 9.4 (which shows calculations of Z_{s} based on standard transformers) to eliminate troublesome calculations attendant to the motor impedance being in parallel with Z_{s}.

9.5.2 Calculation Examples

1. 3-phase Circuit

For the short circuit at point S in Fig. 9.5, the equivalent circuit will be as shown in Fig. 9.6. The 3-phase short-circuit current can be obtained by either the \%impedance method or Ohm's law, as given in Table 9.6.

Table 9.6 Calculation Example: 3-Phase Short-Circuit Current

	\% impedance method	Ohmic method
Power supply impedance Z	The supply short-circuit capacity, being unknown, is defined as 1000 MVA with $X_{L} / R_{L}=25$. From Eq. 13, at the 1000kVA reference capacity: $\begin{aligned} & Z_{L}=\frac{1000 \times 10^{3}}{1000 \times 10^{6}} \times 100=0.1(\%) \\ & \text { since } X_{L} / R_{L}=25 \\ & 0.1=\sqrt{R_{L}{ }^{2}+\left(25 R_{L}\right)^{2}}=25.02 R_{L} \\ & Z_{L}=R_{L}+j X_{L}=0.0040+j 0.0999 \text { (\%) } \end{aligned}$	The supply short-circuit capacity, being unknown, is defined as 1000 MVA with $\mathrm{X}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}=25$. From Eq. 10, the supply impedance seen from the primary sicde: $\mathrm{Z}_{\mathrm{L}}=\frac{(6600)^{2}}{1000 \times 10^{6}}=0.0436(\Omega)$ and since $X_{L} / R_{L}=25: Z_{L}=1.741+j 43.525(\mathrm{~m} \Omega)$ From Eq. 11, supply impedance converted to the secondary side is: $\begin{aligned} \mathrm{Z}_{\mathrm{L}} & =(1.741+\mathrm{j} 43.525) \times\left(\frac{440}{6600}\right)^{2} \\ & =0.00773+j 0.1934(\mathrm{~m} \Omega) \end{aligned}$ Note: The supply ohmic impedance can more simply be derived: since it is 100% at short-circuit capacity, Z_{L} is obtained from Eq. 9, after percentage to ohmic conversion: $\begin{aligned} & Z_{L}=\frac{440^{2}}{1000 \times 10^{6}} \times 100 \times 10^{-2} \times 10^{3}=0.1936(\mathrm{~m} \Omega) \\ & \text { and since } \\ & X_{L} / R_{L}=25, Z_{L}=0.0069+j 0.1721(\mathrm{~m} \Omega) \end{aligned}$
Transformer impedance Z_{T}	From Table 9.1: $Z_{T}=1.23+j 5.41$ From Eq. 14, after conversion to reference capacity, 1000kVA: $\begin{aligned} Z_{\mathrm{T}} & =(1.23+\mathrm{j} 5.41) \times \frac{1000 \times 10^{3}}{1500 \times 10^{3}} \\ & =0.82+\mathrm{j} 3.607(\%) \end{aligned}$	From Table 9.1: $\mathrm{Z}_{\mathrm{T}}=1.23+\mathrm{j} 5.41 \text { (\%) }$ From Eq. 9, after percentage to ohmic conversion. $\begin{aligned} Z_{\mathrm{T}} & =\frac{440^{2}}{1500 \times 10^{3}} \times(1.23+\mathrm{j} 5.41) \times 10^{-2}(\Omega) \\ & =1.2906+\mathrm{j} 6.9825(\mathrm{~m} \Omega) \end{aligned}$
Motor impedance Z_{M}	The total motor capacity, being unknown, is assumed equal to the transformer capacity, with: $\% Z_{M}=25(\%) X_{M} / R_{M}=6$ From Eq. 14, at reference capacity, 1000kVA: $\begin{aligned} Z_{M} & =(4.11+j 24.66) \times \frac{1000 \times 10^{3}}{1500 \times 10^{3} \times 0.8} \\ & =3.42+\mathrm{j} 20.55(\%) \end{aligned}$	The total motor capacity, being unknown, is assumed equal to the transformer capacity, with: $\begin{aligned} & \% Z_{M}=25(\%) \quad X_{M} / R_{M}=6 \quad Z_{M}=4.11+\mathrm{j} 24.66 \\ & Z_{M}=4.11+\mathrm{j} 24.66(\%) \end{aligned}$ From Eq. 9, after percentage to ohmic conversion: $\begin{aligned} \mathrm{Z}_{\mathrm{M}} & =\frac{440^{2}}{1500 \times 10^{3} \times 0.8} \times(4.11+\mathrm{j} 24.66) \times 10^{-2}(\Omega) \\ & =6.6294+\mathrm{j} 39.7847(\mathrm{~m} \Omega) \end{aligned}$
Total power supply impedance Z_{s}	$\begin{aligned} Z_{S} & =\frac{\left(Z_{L}+Z_{T}\right) Z_{M}}{Z_{L}+Z_{T}+Z_{M}} \\ & =0.671+j 3.142 \text { (\%) } \end{aligned}$ (R and X are calculated, per §9.3.2.)	$\begin{aligned} Z_{S} & =\frac{\left(Z_{L}+Z_{T}\right) Z_{M}}{Z_{L}+Z_{T}+Z_{M}} \\ & =1.299+j 6.083(\mathrm{~m} \Omega) \end{aligned}$ (R and X are calculated, per §9.3.2.)
Line impedance Z_{w}	Multiplying the value from Table 9.2 by a wire length of 10 M , and converting to the 1000 kVA reference, from Eq. 12: $\begin{aligned} \mathrm{Z}_{\mathrm{W}} & =\frac{1000 \times 10^{3}}{440^{2}}(0.0601+j 0.079) \times 10^{-3} \times 10 \times 100 \\ & =0.310+\mathrm{j} 0.408(\%) \end{aligned}$	Multiplying the value from Table 9.2 by a wire length of 10 M . $\begin{aligned} \mathrm{Z}_{\mathrm{w}} & =(0.0601+\mathrm{j} 0.079) \times 10 \\ & =0.601+\mathrm{j} 0.79(\mathrm{~m} \Omega) \end{aligned}$
Total impedance Z	$\begin{aligned} Z & =Z_{S}+Z_{w} \\ & =0.981+j 3.550=3.683(\%) \end{aligned}$	$\begin{aligned} Z & =Z_{S}+Z_{w} \\ & =1.900+\mathrm{j} 6.873=7.1307(\mathrm{~m} \Omega) \end{aligned}$
3-phase short-circuit symmetrical current I_{s}	From Eq. 2: $\begin{aligned} I_{S} & =\frac{1000 \times 10^{3}}{\sqrt{3} \times 440 \times 3.683} \times 100 \\ & =35.622(\mathrm{~A}) \end{aligned}$	From Eq. 1 $\begin{aligned} \mathrm{I}_{\mathrm{S}} & =\frac{440}{\sqrt{3} \times 7.1307 \times 10^{-3}} \\ & =35.622(\mathrm{~A}) \end{aligned}$

Fig. 9.5 Circuit Configuration

Fig. 9.6 Equivalent Circuit

MOULDED CASE CIRCUIT BREAKERS

[^0]: To be agreed soon.

[^1]: To be agreed soon.

[^2]: Specifty frequency

[^3]: Icu: Rated breaking capacity

[^4]: Real value of total harmonic
 (1) Distortion percent $=\frac{\text { wave component }}{\text { Real value of basic frequency }} \times 100 \leq 100 \%$ or less
 (2) Peak factor $=\frac{\text { Peak value }}{\text { Real value }} \leq 3$ or less

[^5]: *: $1 \mathrm{G}=980 \mathrm{~cm} / \mathrm{s}^{2}$

