340 4-Ghannel RF Relays

Ball Grid Array 4-Channel Relays

The B40 is four independent form A channels in one quad package. Coto's Ball Grid A rray (BGA) construction offers a breakthrough in reed relay performance. This patented technology ${ }^{1}$ allows for shorter RF paths in a controlled 50Ω environment to minimize signal attentuation. The designer is now able to switch or pass signals with wider bandwidth and faster rise time than alternative technologies. This is particularly important in M ixed Signal IC testers. This 4-in-one BGA packaging allows relays to be integrated easily on boards designed for surface mount processing.

Series Features

- BGA Surface M ount
- A bility to pass GHz signals
- Rise time < 40 $\mathrm{\rho}$ Sec
- 50Ω Characteristic Impedance
- Low Capacitance
- Patented Design ${ }^{1}$

Top View

Applications

- IC Testers
- In-Line R elay Testers
- Memory Testers
- M ixed Signal Testers
- High Bandpass A pplications

B40 4-Channel RF Relays

Test Parameters	Conditions ${ }^{1,2}$	Min	$\begin{aligned} & \text { B40 } \\ & \text { Typ } \\ & \hline \end{aligned}$	Max	Units
Coil Resistance		49.5	55.0	60.5	Ω
Nominal Voltage	3.3 V Coil		3.3	4.0	Volts DC
M ust O perate Voltage				2.4	Volts DC
M ust R elease Voltage	B 40-0002	0.4			Volts DC
Coil Resistance		149.4	166.0	182.6	Ω
Nominal Voltage	5V Coil		5.0	6.0	Volts DC
M ust Operate Voltage				3.8	Volts DC
M ust R elease Voltage	B 40-0003	0.4			Volts DC
Switching Voltage	M ax DC/Peak AC			125	Volts
Switching Current				0.25	A mps
Carry Current (Continuous)	Switch and Shield			0.5	A mps
Contact R ating (R esistive L oad)	Resistive Load			3.0	Watts
Life Expectancy Signal Switching ${ }^{3}$	IVDC / 10mA		1000		$\times 10^{6} 0 \mathrm{ps}$
Resistive Load ${ }^{3}$	12 V C / 10mA		1		$\times 10^{6} 0 \mathrm{ps}$
Other Load Conditions ${ }^{3}$	Consult Factory				
Static Contact R esistance (initial)	0.05V D C / 10mA			0.125	Ω
D ynamic Contact R esistance (initial)	$0.5 \mathrm{~V} / 50 \mathrm{~mA} 100 \mathrm{~Hz}, 1.5 \mathrm{mSec}$			0.150	Ω
Insulation Res All Isolated Pins	100V DC	10^{10}	1012		Ω
Capacitance Across Contacts	Shield Guarding		0.2		pF
Capacitance Open Contact to Coil	Shield Guarding		0.3		pF
Capacitance Closed Contact to Coil	Shield Guarding		0.5		pF
A cross Contacts	$100 \mu \mathrm{~A}$		150		V (DC/Pk AC)
Colectre to Coil	$100 \mu \mathrm{~A}$		1000		V (DC/Pk AC)
Strength Contact To Shield	$100 \mu \mathrm{~A}$		1000		V (DC/Pk AC)
Operate Time (including bounce)	Nominal Voltage coil drive @ 30 Hz ,		100	200	$\mu \mathrm{Sec}$
Release Time (Si diode damped)	square wave		30	50	$\mu \mathrm{Sec}$
R F Insertion Loss ${ }^{4}$	-3 dB roll-off frequency	11.0			GHz
Signal R ise Time (10\%-90\%)	C orrected for measurement system response time			40	pSec
M agnetic Interaction ${ }^{5}$	Between A djacent Channels			16	\%

NOTES:

${ }^{1}$ All parameters specified per EIA/NARM standards for dry reed relays, \# R S-421 and
R S-436, if a suitable parametric standard exists.
${ }^{2}$ U nless otherwise noted, all parameters are specified at $25^{\circ} \mathrm{C}$ and 40% R H.
${ }^{3}$ Life expectancies based on characteristic life (63.2\% failure) calculated from the 2-parameter Weibull distribution. Contact resistance $>2.0 \Omega$ defines end of life.
${ }^{4}$ Frequency at which the difference between output and input signal amplitude exceeds -3dB. (D irect wired using 50Ω coaxial cable.)
${ }^{5} \mathrm{M}$ aximum increase in operate voltage for any channel when all channel coils are driven at nominal coil voltage and with the same drive polarity.

ENVIRONMENTAL RATINGS:

Storage Temperature: $-35^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
Operating Temperature: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration: sinusoidal vibration with an amplitude of 10 G over a 10 Hz to 2000 Hz frequency range shall not cause a closed channel activated at the nominal coil voltage to open, not an open channel to close. Max Soldering Temperature: $226^{\circ} \mathrm{C}\left(438^{\circ} \mathrm{F}\right.$) max for 1 minute dwell time. Temperature measured at a relay ball termination.

